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Abstract— A sensor network is a collection of wireless devices
that are able to monitor physical or environmental conditions.
These devices are expected to operate autonomously, be battery
powered and have very limited computational capabilities.This
makes the task of protecting a sensor network against misbe-
havior or possible malfunction a challenging problem. In this
document we discuss performance of Artificial immune systems
(AIS) when used as the mechanism for detecting misbehavior.
We concentrate on performance of respective genes; genes are
necessary to measure a network’s performance from a sensor’s
viewpoint. We conclude that the choice of genes has a profound
influence on the performance of the AIS. We identified a specific
MAC layer based gene that showed to be especially useful for
detection. We also discuss implementation details of AIS when
used with sensor networks.

I. I NTRODUCTION AND MOTIVATION

Sensor networks can be described as a collection of wireless
devices with limited computational abilities which are, due to
their ad-hoc communication manner, vulnerable to misbehav-
ior and malfunction. It is therefore necessary to support them
with a simple,computationally friendlyprotection system.

Artificial immune systems (AIS) are based on principles
adapted from the Human immune system (HIS) [13]; the basic
ability of HIS is an efficient detection of potentially harmful
foreign agents (viruses, bacteria, etc.). The goal of AIS, in
our setting, is identification of nodes with behavior that could
possibly negatively impact the stated mission of the sensor
network. The mission of a sensor network can be monitoring
and processing physical or environmental conditions such as
humidity, temperature, motion or noise. In order to fulfill
this task, individual sensors are suitably distributed in the
monitored area. The communication between sensors is done
without any additional infrastructure, instead data packets get
routed over intermediate sensors until the destination (point of
data collection) is reached.

Misbehavior in wireless sensor networks can take upon dif-
ferent forms: packet dropping, modification of data structures
important for routing, modification of packets, skewing of the
network’s topology or creating ficticious nodes (see [11] for
a more complete list). The reason for sensors (possibly fully
controlled by an attacker) to execute any form of misbehavior
can range from desire to save battery power to making a
given wireless sensor network non-functional. Malfunction can
also be considered a type of unwanted behavior. Any system
aimed at protecting a wireless sensor network should work
autonomously with none or a sporadic human intervention.

Motivated by results in [13], [21] we have undertaken

a detailed performance study of AIS with focus on sensor
networks. In an earlier paper [9], we concluded that AIS based
misbehavior detection offers a decent detection rate at a low
computational cost which could make it a good solution for
sensor networks. The general conclusions that can be drawn
from the study presented in this document are:

1) Genes from different layers of the OSI stack need to
be combined in order to achieve a good performance of AIS.
Genes are necessary to measure a network’s performance from
a node’s viewpoint, they must be easy to compute. Our results
show that somewhat surprisingly a gene that was based purely
on the MAC layer significantly contributed to the overall
detection performance. This gene poses less limitations when
a MAC protocol with a sleep-wake-up schedule such as the
S-MAC [23] is used.

2) We only used a single instance of learning and detection
mechanism per node. This is different from approach used
in [13], [21], where one instance was used for each ofm
possible neighbors. Our performance results combined with
results in [9] show that the approach in [13], [21] may not be
feasible for sensor networks. It may allow for an easy Sybil
attack and, in general,m = n−1 instances might be necessary,
wheren is the total number of sensors in the network. Instead,
we suggest that flagging a node as misbehaving should, if
possible, be based on detection at several nodes (see [24] for
architecture oriented thoughts on global detection).

3) Only less than 5% detectors were used in detecting
misbehavior. This suggests that many of the detectors do
not comply with constraints imposed by the communications
protocols; this is an important fact when designing AIS for
sensor networks because the memory capacity at sensors is
expected to be very limited.

II. A RTIFICIAL IMMUNE SYSTEMS

A. Background

The Human immune system is a rather complicated mecha-
nism that is able to protect humans against an amazing set
of extraneous attacks. This system is remarkably efficient,
most of the time, in discriminating betweenself andnon-self
antigens.1 A non-self antigen is anything that can initiate an
immune response; examples are a virus, bacteria, or splinter.
The opposite to non-self antigens are self antigens; self anti-
gens are human organism’s own cells.

1Self and non-self in short.
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Fig. 1. Detector generation by random-generate-and-test process. Only strings
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Fig. 2. Recognizing non-self is done by matching detectors with suspected
non-self strings.

B. Learning

The process of T-cells maturation in thymus is used as
an inspiration for learning in AIS. The maturation of T-
cells (detectors) in thymus is a result of a pseudo-random
process. After a T-cell is created (see Fig. 1), it undergoes
a censoring process callednegative selection. During negative
selection T-cells that bind self are destroyed. Remaining T-
cells are introduced into the body. The recognition of non-
self is then done by simply comparing T-cells that survived
negative selection with a suspected non-self. This processis
depicted in Fig. 2. It is possible that the self set is incomplete,
while a T-cell matures (tolerization period) in the thymus.This
leads to producing T-cells that should have been removed from
the thymus and can cause an autoimmune reaction, i.e. it leads
to false positives.

The random-generate-and-test approach for producing T-
cells (detectors) described above is analyzed in [8]. In general,
the number of candidate detectors to the self set size needs be
exponential (if a matching rule with fixed matching probability
is used). Another problem is a consistent underfitting of the
non-self set; there exist “holes” in the non-self set that are
undetectable. In theory, for some matching rules, the number
of holes can be very unfavorable [22]. In practical terms, the
effect of holes depends on the characteristics of the non-self
set, representation and matching rule [12]. The advantage of
this algorithm is itssimplicity and good experimental results
in cases when the number of detectors to be produced is
fixed and small [21]. A review of other approaches to detector
computation can be found in [2].

III. SENSORNETWORKS

A sensor network can be defined in graph theoretic frame-
work as follows: a sensor network is a netN = (n(t), e(t))
where n(t), e(t) are the set of nodes and edges at time
t, respectively. Nodes correspond to sensors that wish to
communicate with each other. An edge between two nodesA
andB is said to exist whenA is within the radio transmission

range ofB and vice versa. The imposed symmetry of edges is
a usual assumption of many mainstream protocols. The change
in the cardinality of setsn(t), e(t) can be caused by switching
on/off one of the sensors, failure, malfunction, removal, signal
propagation, link reliability and other factors.

Data exchange in a point-to-point (uni-cast) scenario usually
proceeds as follows: a user initiated data exchange leads toa
route query at the network layer of the OSI stack. A routing
protocol at that layer attempts to find a route to the data
exchange destination. This request may result in a path of
non-unit length. This means that a data packet in order to
reach the destination has to rely on successive forwarding by
intermediate nodes on the path. An example of an on-demand
routing protocol designed specifically for ad hoc networks is
DSR [15]. Route search in this protocol is started only when a
route to a destination is needed. This is done by flooding the
network with RREQ2 control packets. The destination node
or an intermediate node that knows a route to the destination
will reply with a RREP control packet. This RREP follows
the route back to the source node and updates routing tables
at each node that it traverses. A RERR packet is sent to the
connection originator when a node finds out that the next node
on the forwarding path is not replaying.

At the MAC layer, the medium reservation is often con-
tention based. In order to transmit a data packet, the IEEE
802.11 MAC protocol uses carrier sensing with an RTS-CTS-
DATA-ACK handshake.3 Should the medium not be available
or the handshake fails, an exponential back-off algorithm
is used. This is combined with a mechanism that makes it
easier for neighboring nodes to estimate transmission dura-
tions. This is done by exchange of duration values and their
subsequent storing in a data structure known as Network
allocation vector (NAV). With the goal to save battery power,
researchers suggested, a sleep-wake-up schedule for nodes
would be appropriate. This means that nodes do not listen
continuously to the medium, but switch themselves off and
wake up again after a predetermined period of time. Such a
sleep and wake-up schedule is similarly to duration values
exchanged among nodes. An example of a MAC protocol,
designed specifically for sensor networks, that uses such a
schedule is the S-MAC [23]. A sleep and wake-up schedule
can severely limit operation of a node inpromiscuous mode.
In promiscuous mode, a node listens to the on-going traffic in
the neighborhood and collects information from the overheard
packets. This technique is used e.g. in DSR for improved
propagation of routing information. For more information on
sensor networks, we refer the reader to [16].

IV. AIS FOR SENSORNETWORKS: DESIGN PRINCIPLES

In our approach, each node produces and maintains its own
set of detectors. This means that we applied a direct one-to-
one mapping between a human body with a thymus and a
node. We represent self, non-self and detector strings as bit-
strings. The matching rule employed is ther-contiguous bits
matching rule. Two bit-strings of equal length match under
the r-contiguous matching rule if there exists a substring of
length r at positionp in each of them and these substrings

2RREQ = Route Request, RREP = Route Reply, RERR = Route Error.
3RTS = Ready to send, CTS = Clear to send, ACK = Acknowledgment.



are identical. Detectors are produced by the process shown in
Fig. 1, i.e. by means of negative selection when detectors are
created randomly and tested against a set of self strings.

Each antigen consists of several genes.Genesare per-
formance measures that a node can acquire locally without
the help from another node. In practical terms this means
that an antigen consists ofx genes; each of them encodes
a performance measure, averaged in our case over a time
window. An antigen is then created by concatenating thex
genes.

In choosing the correct genes for an AIS to be applied
to sensor networks, the choice can be limited due to the
simplified OSI protocol stack of sensors. For example, Mica2
sensors [1] using the TinyOS operating system do not guar-
antee any end-to-end connection reliability (transport layer),
leaving only data traffic at the lower layers for consideration.

Let us assume that the routing protocol finds for a connec-
tion the pathss, s1, ..., si, si+1, si+2, ..., sd from the source
nodess to the destination nodesd, wheress 6= sd. We have
used the followinggenesto capture certain aspects of MAC
and routing layer traffic information (we averaged over a time
period (window size) of 500 seconds):

MAC Layer:
#1 Ratio of complete MAC layer handshakes between

nodessi andsi+1 and RTS packets sent bysi to si+1. If
there is no traffic between two nodes this ratio is set to
∞ (a large number). This ratio is averaged over a time
period. A complete handshake is defined as a completed
sequence of RTS, CTS, DATA, ACK packets betweensi

andsi+1.
#2 Ratio of data packets sent fromsi to si+1 and then

subsequently forwarded tosi+2. If there is no traffic
between two nodes this ratio is set to∞ (a large
number). This ratio is computed bysi in promiscuous
mode. This ratio is also averaged over a time period.
This gene was adapted from the watchdog idea in [20].

#3 Time delay that a data packet spends atsi+1 before
being forwarded tosi+2. The time delay is observed by
si in promiscuous mode. If there is no traffic between
two nodes the time delay is set to zero. This measure is
averaged over a time period. This gene is a quantitative
extension of the previous gene.
Routing Layer:

#4 The same ratio as in #2 but computed separately for
RERR routing packets.

#5 The same delay as in #3 but computed separately for
RERR routing packets.

The Gene #1 is MAC protocol oriented, the remaining ones
are watchdog oriented. The first gene can also be characterized
as MAC layer quality oriented –it indirectly measures the
medium contention level, whereas the remaining ones are
misbehavior oriented. As we will show later, in the particular
type of misbehavior (probabilistic packet dropping) that we
applied, the first two genes come out as “the strongest”.
The disadvantage of the watchdog based genes is that due
to limited battery power, nodes could operate using a sleep-
wake-up schedule similar to the one used in the S-MAC. This
would mean that the nodesi has to stay awake until the node
si+1 correctly transmits tosi+2. The consequence would be

a longer wake-up time and possible restrictions in publishing
sleep-wake-up schedules.

In [19] the authors applied a different set of genes. The
observed set of events was the following: A = RREQ sent, B
= RREP sent, C = RERR sent, D = DATA sent and IP source
address is not of the monitored (neighboring) node, E = RREQ
received, F = RREP received, G = RERR received, H = DATA
received and the IP destination address is not of the monitored
node (the DSR routing protocol was used). The events D and
H take into consideration that the source and destination nodes
of a connection might appear as misbehaving as they seem to
“deliberately” create and delete data packets. Then the setof
their four genes is as follows:

#1 Number of E over a time period.
#2 Number of (E*(A or B)) over a time period.
#3 Number of H over a time period.
#4 Number of (H*D) over a time period.
The time period (window size) in their case was 10s; *

is the Kleene star operator (zero or more occurrences of
any event(s) are possible). Similar to our watchdog genes,
these genes impose additional requirements on MAC protocols
such as the S-MAC. Their dependence on the operation in
promiscuous mode is, however, more pronounced as a node
has to continuously observe packet events at all monitored
nodes.

The research in the area of what and to what extent can be
or should be locally measured at a node, is independent of the
learning mechanism used (negative selection in both cases).
Performance of an AIS can partly depend on the ordering and
the number of used genes. As longer antigens (consisting of
more genes) indirectly imply more candidate detectors, the
number of genes should be carefully considered. Givenx
genes, it is possible to order them inx! different ways. In
our experience, the rules for ordering genes and the number
of genes can be summed up as follows:

1) Keep the number of genes small. In our experiments, we
show that with respect to the learning mechanism used and the
expected deployment (sensor networks), 2-3 genes are enough
for detecting a basic type of misbehavior.

2) Order genes either randomly or use a predetermined
order. Both of these possibilities are computationally friendly
(with respect to sensor networks). Defining a utility relation
between genes, and ordering genes with respect to it can, in
general, lead to problems that are considered intractable.

3) Produce several types of antigen. These antigens can
share genes but the number of genes per type of antigen should
be limited. The advantage is that the number of candidate
detectors necessary for negative selection stays small. Multiple
gene membership with randomized ordering could additionally
lead to an improved robustness of the underlying AIS, espe-
cially, when one misbehaving node can be detected by several
other nodes.

Our experiments show that genes cannot be considered in
isolation, i.e. when a detector matched an antigen under the
r-contiguous matching rule, usually this match spanned over
several genes.

A. Learning and Detection

Learning and detection is done by applying the mechanisms
shown in Figs. 1 and 2. The detection itself is very straightfor-



ward. In the learning phase, a misbehavior-free period (see[3]
on possibilities for circumventing this problem) is necessary
so that nodes get a chance to learn what is the normal behavior.
When implementing the learning phase, the designer gets to
choose from two possibilities:

1) Learning and detection at a node get implemented for
each neighboring node separately. This means that different
antigens have to get computed for each neighboring node, de-
tector computation is different for each neighboring node and
then, subsequently, detection is different for each neighboring
node. The advantage of this approach is that the node is able
to directly determine which neighboring node misbehaves; the
disadvantage is thatm instances (m is the number of neighbors
or node degree) of the negative selection mechanism have
to get executed; this can be computationally prohibitive for
sensor networks asm can, in general, be equal to the total
number of sensor. This allows for an easy Sybil attack [11]
in which a neighbor would create several identities; the node
would then be unable to recognize that these identities belong
to the same neighbor. This approach was used in [21], [19].

2) Learning and detection at a node get implemented in a
single instance for all neighboring nodes. This means a node
is able to recognize anomaly (misbehavior) but it may be
unable to determine which one from them neighboring nodes
misbehaves. This implies that nodes would have to cooperate
when detecting a misbehaving node, exchange anomaly infor-
mation and be able to draw a conclusion from the obtained
information. An argument for this approach is that in order to
detect nodes that misbehave in collusion, it might be necessary
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Fig. 3. Performance of misbehavior detection.

to rely to some extent on information exchange among nodes,
thus making this a natural solution to the problem. We have
used this approach; a post-processing phase, that used avail-
able routing information, was necessary to determine whether
a node was correctly flagged as misbehaving or not.

We find the second approach to be more suited for wireless
sensor networks. In Fig. 3(b), we illustrate the computational
requirements of the negative selection process, if executed
in a single instance. We believe that a complete detector set
computation will be very infrequent.
Whichr is the correct one?

An interesting technical problem is to tune ther parameter
for ther-contiguous matching rule so that the underlying AIS
offers good detection and false positives rates. One possibility
is a lengthy simulation study such as the one described in [9].
Through multiparameter simulation we were to able to show
that r = 10 offers the best performance for our setup. In [10]
we experimented with the idea of “growing” and “shrinking”
detectors; this idea was motivated by [14]. The initialr0 for
a growing detectors can be chosen asr0 = ⌈l/2⌉, where l
is the detector length. The goal is to find the smallestr such
that a candidate detector does not match any self antigen. This
means that a candidate detector gets randomly created and then
tested against the self set. Initially, a larger (more specific) r
is chosen; the smallestr that fulfills the above condition can
be found through binary search. For shrinking detectors, the
approach is reciprocal. Our initial goal was to show that such
growing or shrinking detectors would offer a better detection
or false positives rate. Short of proving this in a statistically
significant manner, we observed that the growing detectors can
be used for self tuning ther parameter. The averager value
was close to ther that we determined through simulation (the
setup in this case was different from the one described here).

B. Further Optimizations

Our experiments show that only a small number of detectors
get ever used (less than 5%). The reason for that is that they
get produced in a random way, not considering structure of the
protocols. For example, a detector that is able to detect whether
i) data packets got correctly transmitted and ii) 100% of all
MAC layers handshakes were incomplete is superfluous as this
case should never happen. In [6], the authors conclude:“...
uniform coverage of non-self space is not only unnecessary,it
is impractical; non-self space is too big”. Application driven
knowledge can be used to set up a rule based system that
would exclude infeasible detectors; see [7] for a rule based
system aimed at improved coverage of the non-self set. In [13],
it is suggested that unused detectors should get deleted andthe
lifetime of useful detectors should be extended.

C. Misbehavior

In a companion paper [11] we have reviewed different
types of misbehavior at the MAC, network and transport
layers of the OSI protocol stack. We note that solutions to
many of these attacks have been already proposed; these are
however specific to a given attack. The appeal of AIS based
misbehavior detection rests on its simplicity and applicability
in an environment that is extremely computationally and
bandwidth limited. Misbehavior in sensor networks does not
have to be executed by sensors themselves; one or several



computationally more powerful platforms (laptops) can be
used for the attack. On the other hand, a protection using
such more advanced computational platforms is, due to e.g. the
need to supply them continuously with electric power, harder
to imagine. It would also create a point of special interest for
the possible attackers.

V. EXPERIMENTAL SETUP

In [9] we showed that AIS can be efficiently used for
detecting misbehavior in sensor networks. In this documentwe
provide an in-depth analysis of relative usefulness of genes,
the variability of antigens and the efficiency of the negative
selection learning process. The experimental setup is similar
to [9]; the focus of performance analysis is however different.

Definitions of input and output parameters:The input
parameters for our experiments were:r parameter for the r-
contiguous matching rule, the (desired) number of detectors,
misbehavior level and traffic rate at nodes. Misbehavior was
modeled as random packet dropping at selected nodes.

The performance (output) measures were arithmetic aver-
ages and 95% confidence intervalsci95% of detection rate,
number of false positives, real time to compute detectors, data
traffic rate at nodes, number of different antigens in a run,
and number of matches for each gene. The detection ratedr
is defined asdns

ns
, wheredns is the number of detected non-

self strings andns is the total number of non-self strings. A
false positive in our definition is a string that is not self but
can still be a result of anomaly that is identical with the effects
of a misbehavior. A non-valid detector is a candidate detector
that matches a self string and must therefore be removed. The
number of matches for each gene was evaluated using ther-
contiguous matching rule; we considered two cases: i) two
bit-strings get matched from the left to the right and the first
such a match will get reported (matching gets interrupted),
ii) two bit-strings get matched from the left to the right and
all possible matches will get reported. There is a notable
performance difference4 between these two approaches. The
first approach is exactly what we used when computing the
real time necessary for negative selection, the second approach
was used when our goal was to evaluate relative usefulness of
each gene.

Scenario description: We wanted to capture “self” and
“non-self” packet traffic in a large enough synthetic static
sensor network and test whether using an AIS we are able
to recognize non-self, i.e. misbehavior. The topology of this
network was determined by making asnapshotof 1,718
mobile nodes (each with 100m radio radius) moving in a
square area of 2,900m×2,950m as prescribed by the random
waypoint mobility model [15]. The motivation in using this
movement model and then creating a snapshot are the results in
our previous paper [5] that deals with structural robustness of
sensor network. We chose source and destination pairs for each
connection so that several alternative independent routesexist;
the idea was to benefit from route repair and route acquisition
mechanisms of the DSR routing protocol, so that the added
value of AIS based misbehavior detection is obvious.

4Both areO(r(l − r)) s.t. r ≤ l, where l is the bitstring length. In the
second case, alll − r comparisons must be done.

We used 10 CBR (Constant bit rate) connections; the CBR
data traffic may not correspond to “real” sensor network traffic,
however, there is no much practical experience with these
types of networks, and the data traffic pattern can substantially
vary in the future. The connections were chosen so that their
length is∼7 hops and so that these connections share some
common intermediate nodes; see [9] for a visualization of the
network and the connections. For each packet received or sent
by a node we have captured the following information: IP
header type (UDP, 802.11 or DSR in this case), MAC frame
type (RTS, CTS, DATA, ACK in the case of 802.11), current
simulation clock, node address, next hop destination address,
data packet source and destination address and packet size.

Encoding of self and non-self antigens:Each of the five
genes was transformed in a 10-bit signature where each bit
defines an interval5 of a gene specific value range. We created
self and non-self antigen strings by concatenation of the
defined genes. Each self and non-self antigen has therefore
a size of 50 bits. The interval representation was chosen in
order to avoid carry-bits (the Gray coding is an alternative
solution).

Constructing the self and non-self sets:We have randomly
chosen 28 non-overlapping 500-second windows in our 4-
hour simulation. In each 500-second window self and non-self
antigens are computed for each node. This was repeated 20
times for independent Glomosim runs.

Misbehavior modeling:Misbehavior is modeled as random
data packet dropping (implemented at the network layer; data
packets6 that should get dropped will simply not be inserted
into the IP queue); we have randomly chosen 236 nodes and
these were forced to drop{10, 30, 50%} of data packets. How-
ever, there were only 3-10 nodes with misbehavior and with
a statistically significant number of packets for forwarding in
each simulation run.

Simulation phases:The experiment was done in four phases.
1) 20 independent Glomosim runs were done for one of

{10, 30, 50%} misbehavior levels and “normal” traffic
with no misbehavior.

2) Self and non-self antigen computation (encoding).
3) The 20 “normal” traffic runs were used to compute

detectors. Given the 28 windows and 20 runs, the sample
size was 20×28 = 560, i.e. detectors at each node were
discriminated against 560 self antigens.

4) Using the runs with{10, 30, 50%} misbehavior levels,
the process shown in Fig. 2 was used for detection; we
restricted ourselves to nodes that had in both the normal
and misbehavior traffic at least a certain number of data
packets to forward (packet threshold).

The experiment was then repeated with differentr, desired
number of detectors and misbehavior level.

The parameters for this experiment are summarized in
Fig. 4. The injection rate and packet sizes were chosen in
order to comply with usual data rates of sensors (e.g. 38.4kbps
for Mica2; see [1]). We chose the Glomosim simulator over

5The interval encoding of genes is adapted from [21]. This wayonly one
of the 10 bits is set to 1, i.e. there are only 10 possible valuelevels that it is
possible to encode in this case.

6Data packets include both data packets from the transport layer as well as
routing protocol packets.



1) Negative selection algorithm: random-generate-and-test. Implemented in C++, compiled with GNU g++ v4.0 with -O3 option.
2) Input parameters: 1. r-contiguous matching rule withr = {7, 10, 13, 16, 19, 22}. 2. Encoding: 5 genes each 10 bits long =

50 bits. 3. Number of detectors{500, 1000, 2000, 4000}. 4. Misbehavior level{10, 30, 50%} 5. Window size 500 seconds; 28
complete windows over 4-hour simulation time.

3) Performance measures:real time to compute detectors, detection rate, rate of non-valid detectors, data traffic rate at nodes,
number of different antigens in a run, number of matches for each gene; their arithmetic averages and 95% confidence intervals.

4) Network topology: Snapshot of movement modeled by random waypoint mobility model i.e. it is a static network. There were
1,718 nodes. The area was a square of 2,900m×2,950m. The transmission range of transceivers was 100 meters.

5) Number of connections:10 CBR (constant bit rate) connections.MAC protocol : IEEE 802.11b DCF.Routing protocol: DSR.
Other parameters: (i) Propagation path-loss model: two ray(ii) Channel frequency: 2.4 GHz (iii) Topography: Line-of-sight (iv)
Radio type: Accnoise (v) Network protocol: IPv4 (vi) Connection type: UDP.

6) Injection rate: 1 packet/second. 14,400 packets per connection were injected. Packet size was 512 bytes.
7) The number of independent simulation runs for each combination of input parameters was 20. The simulation time was 4 hours.
8) Simulator used:GlomoSim 2.03; hardware used: 30× Linux (SuSE 10.0) PC with 2GB RAM and Pentium 4 3GHz microprocessor.

Fig. 4. Parameters used in the experiment.
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Fig. 5. Window threshold and detector related performance measures.
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Fig. 6. Antigen and gene related performance measures.
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Fig. 7. Performance of Genes #1 through #5 for the number of detectors =2000 and (a)r = 7, (b) r = 10, (c) r = 13.



other options (most notably ns2) because of its better scaling
characteristics and our familiarity with the tool.

VI. RESULTSEVALUATION

When evaluating our results we define two additional con-
straints:

C1. We define a node to be detected as misbehaving if it gets
flagged in at least 14 out of the 28 possible windows.
This notion indirectly defines the time until a node is
pronounced to be misbehaving. We call this awindow
threshold.

C2. A nodesi has to forward in average at leastm packets
over the 20 runs in both the “normal” and misbehavior
cases in order to be included into our statistics. This
constraint was set in order to make the detection process
more reliable. It is dubious to flag a neighboring node of
si as misbehaving, if it is based on “normal” runs or runs
with misbehavior, in which nodesi had no data packets
to forward (he was not on a routing path). We call this
a packet threshold; m was in our simulations chosen
from {500, 1000, 2000, 4000}. Example:for a fixed set
of input parameters, a node forwarded in the “normal”
runs in average 1,250 packets and in the misbehavior
runs (with e.g. level 30%) 750 packets. The nodesi

would be considered for misbehavior detection ifm =
500, but not if m ≥ 1000. In other words, a node has
to get a chance to learns what is “normal” and then to
use this knowledge on a non-empty packet stream.

In Fig. 5(a) we show the total number of runs in which a
node was identified as misbehaving (for this and remaining
figures, the C1 constraint had to be met). The steep decline
for valuesr > 10 (in this and other figures) documents that
in these cases it was necessary to produce a higher number
of detectors in order to cover the non-self antigen space. The
higher ther, the higher is the specificity of a detector, this
means that it is able to match a smaller set of non-self antigens.
In Fig. 5(b) and (c) we show the number of detectors that
got matched during the detection phase (see Fig. 2). Fig. (b)
shows the number of detectors matched per run, Fig. (c) shows
the number of detectors matched per window. Fig. (b) is an
upper estimate on the number of unique detectors needed in a
single run. Given that the total number of detectors was 2,000,
there were less than 5% detectors that would get used in the
detection phase. The confidence intervals7 for the number of
unique detectors matched per window (see Fig. (c)) is a direct
consequence of the small variability of antigens as shown in
Fig. 6(a).

Fig. 6(a) shows the number of unique antigens that were
subject to classification into self or non-self. The averagefor
r = {7, 10} is about 1.5. This fact does not directly imply
that the variability of the data traffic would be inadequate.
It is rather a direct consequence of our choice of genes and
their encoding (we only used 10 value levels for encoding).
Fig. 6(b) shows the number of matches between a detector
and an antigen in the following way. When a detector under
the r-contiguous matching rule matches only a single gene
within an antigen, we would increment the “single” counter.

7For practical reasons we showci95% only for 7 ≤ r ≤ 13.

Otherwise, we would increment the “multiple” counter (for
this and remaining figures both the C1 and C2 constrain had
to be met). It is obvious that with increasingr, it gets more and
more probable that a detector would match more than a single
gene. The interesting fact is that the detection rate for both r =
7 andr = 10 is in both cases at about 80% (see Fig. 3(a)). This
means the increasedr did not substantially help to increase the
detection rate. The main difference is the real time to compute
the set of 2,000 detectors (see Fig. 3(b)) and the rate of non-
valid detectors [9] (detectors that got rejected because they
matched a self string; see Fig. 1).

Fig. 6(c) shows the performance of Gene #1. The number
of matches shows that this gene contributed to the overall
detection performance of our AIS. Figs. 7(a-c) sum up per-
formance of the five genes for different values ofr. Again, an
interesting fact is the contribution of Gene #1 to the overall
detection performance. The usefulness of Gene #2 was largely
expected as this gene was tailored for the kind of misbehavior
that we implemented. The other three genes came out as
marginally useful. The importance of the somewhat surprising
performance of Gene #1 is that it can be computed in a
simplistic way and does not require continuous operation ofa
node.

The detailed results regarding the (general) performance of
our AIS were already discussed in [9]. In short, we found out
that a detection rate of above 80% at a moderate rate of false
positives is possible for sensor networks. We also concluded
that the real time needed to compute a detector set may not
be prohibitively high for sensor networks.

VII. R ELATED WORK

In [21], [19] the authors introduced an AIS based misbe-
havior detection system for ad hoc wireless networks. They
used Glomosim for simulating data traffic, their setup was an
area of 800×600m with 40 mobile nodes (speed 1 m/s) of
which 5-20 are misbehaving; the routing protocol was DSR.
Four genes were used to capture local behavior at the network
layer. The misbehavior implemented is a subset of misbehavior
introduced in this paper; their observed detection rate is about
55%. Additionally, a co-stimulation in the form of a danger
signal was used in order to inform nodes on a forwarding
path about misbehavior, thus propagating information about
misbehaving nodes around the network.

In [13] the authors describe an AIS able to detect anomalies
at the transport layer of the OSI protocol stack; only a wired
TCP/IP network is considered. Self is defined as normal
pairwise connections. Each detector is represented as a 49-
bit string. The pattern matching is based on r-contiguous bits
with a fixedr = 12.

Ref. [17] discusses a network intrusion system that aims
at detecting misbehavior by capturing TCP packet headers.
They report that their AIS is unsuitable for detecting anomalies
in communication networks. This result is questioned in [4]
where it is stated that this is due to the choice of problem
representation and due to the choice of matching thresholdr
for r-contiguous bits matching.

To overcome the deficiencies of the generate-and-test ap-
proach a different approach is outlined in [18]. Several signals
each having a different function are employed in order to
detect a specific misbehavior in sensor wireless networks.



Unfortunately, no proper performance analysis was presented
and the properties of these signals were not evaluated with
respect to their misuse.

The main discerning factor between our work and works
shortly discussed above is that our genes benefit from infor-
mation at both the MAC and network layers, we carefully
considered hardware parameters of current sensor devices,
the set of input parameters was designed in order to target
specifically sensor networks and our simulation setup reflects
structural qualities of sensor networks with regards to exis-
tence of multiple independent routing paths. In comparison
to [21], [19] we showed in [9] that in case of static sensor
networks it is reasonable to expect the detection rate to be
above 80%.

VIII. C ONCLUSIONS ANDFUTURE WORK

We showed the influence and usefulness of certain genes in
order to detect misbehavior and the impact of ther parameter
on the detection process. In general, the results in Fig. 7 show
that Gene #1 and #2 obtained of all genes the best results, with
Gene #2 showing always the best results. The contribution
of Gene #1 suggests that observing the MAC layer and the
ratio of complete handshakes to the number of RTS packets
sent is useful for the implemented misbehaviour. Gene #2 fits
perfectly for the implemented misbehavior. It therefore comes
as no surprise that this gene showed the best results in the
detection process. The question which remains open is whether
the two genes are still as useful when exposed to different
attack patterns.

We conclude that the random-generate-and-test process,
with no knowledge of the used protocols and their behavior,
creates many detectors which might show to be superfluous in
detecting misbehavior. A process with some basic knowledge
of protocol limitations might lead to improved quality of
detectors.

In [22] the authors stated that the random-generate-and-
test process“is innefficient, since a vast number of randomly
generated detectors need to be discarded, before the required
number of the suitable ones are obtained”.Our results show
that at r = 10, the rate of discarded detectors is less than
4%; see [9] for details. Hence, at least in our setting we
could not confirm the above statement. A disturbing fact is,
however, that the size of the self set in our setting was probably
too small in order to justify the use of negative selection. A
counter-balancing argument is here the realistic setup of our
simulations and a decent detection rate.

We would like to point out that the Fisher iris and biomed-
ical data sets used in [22] could be very different from data
sets generated by our simulations. Our experiments show that
anomaly (misbehavior) data sets based on sensor networks
could be in general very sparse. This effect can be due to the
limiting nature of communications protocols. Since the Fisher
iris and biomedical data sets were in [22] not evaluated with
respect to some basic properties e.g. degree of clustering,it is
hard to compare our results with the results presented therein.
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