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Abstract— A sensor network is a collection of wireless devices a detailed performance study of AIS with focus on sensor
that are able to monitor physical or environmental conditions. networks. In an earlier paper [9], we concluded that AIS Hase
These devices are expected to operate autonomously, be st mjisbehavior detection offers a decent detection rate atva lo
powered and have very limited computational capabilities.This computational cost which could make it a good solution for

makes the task of protecting a sensor network against misbe- .
havior or possible malfunction a challenging problem. In ths ?ensc;rr] neiwgrks. Thetggr!ermcc()jnclusmn? tha.t can be drawn
document we discuss performance of Artificial immune systes rom the study presented in this document are.

(AIS) when used as the mechanism for detecting misbehavior. 1) Genes from different layers of the OSI stack need to
We concentrate on performance of respective genes; genesear be combined in order to achieve a good performance of AlS.
necessary to measure a network's performance from a senser’ Genes are necessary to measure a network’s performance from
viewpoint. We conclude that the choice of genes has a profodn g node’s viewpoint, they must be easy to compute. Our results
influence on the performance of the AIS. We |dent|_f|ed aspectfi  ghow that somewhat surprisingly a gene that was based purely
MAC layer based gene that showed to be especially useful for o, e MAC layer significantly contributed to the overall
detection. We also discuss implementation details of AIS vén - : e

: detection performance. This gene poses less limitatiorenwh
used with sensor networks. .

a MAC protocol with a sleep-wake-up schedule such as the

I. INTRODUCTION AND MOTIVATION S-MAC [23] is used. _ _ _
2) We only used a single instance of learning and detection

Sensor networks can be described as a collection of wirelegschanism per node. This is different from approach used
devices with limited computational abilities which areedo i, [13], [21], where one instance was used for eachnof
their ad-hoc communication manner, vulnerable to misbehayyssiple neighbors. Our performance results combined with
ior and malfunction. It is therefore necessary to supp@tth regits in [9] show that the approach in [13], [21] may not be
with a simple,computationally friendlyprotection system. — feasible for sensor networks. It may allow for an easy Sybil

Artificial immune systems (AIS) are based on principlegitack and, in general, = n—1 instances might be necessary,
adapted from the Human immune system (HIS) [13]; the basjgeren, is the total number of sensors in the network. Instead,
ab|I|_ty of HIS is an efficient detgcuon of potentially hanahf we suggest that flagging a node as misbehaving should, if
foreign agents (viruses, bacteria, etc.). The goal of AfS, hossible, be based on detection at several nodes (see j24] fo
our setting, is identification of nodes with behavior thatildo 5rchitecture oriented thoughts on global detection).
possibly negatively impact the stated mission of the Sensorgy only less than 5% detectors were used in detecting

network. The_ mission of a sensor network can k?? MONitoriRgishehavior. This suggests that many of the detectors do
and processing physical or environmental conditions sch & comply with constraints imposed by the communications
humidity, temperature, motion or noise. In order to fulfil rotocols; this is an important fact when designing AIS for

this task, individual sensors are suitably distributed fe t sonsor networks because the memory capacity at sensors is
monitored area. The communication between sensors is d‘?—&ﬁected to be very limited.

without any additional infrastructure, instead data p&ckget
routed over intermediate sensors until the destinatiom{wd
data collection) is reached.

Misbehavior in wireless sensor ne.zt_wor.ks can take upon dj- Background
ferent forms: packet dropping, modification of data struesu
important for routing, modification of packets, skewing bét ~ The Human immune system is a rather complicated mecha-
network’s topology or creating ficticious nodes (see [11] folism that is able to protect humans against an amazing set
a more complete list). The reason for sensors (possibly fupf extraneous attacks. This system is remarkably efficient,
controlled by an attacker) to execute any form of misbehavignost of the time, in discriminating betweeself and non-self
can range from desire to save battery power to makingaatigens: A non-self antigen is anything that can initiate an
given wireless sensor network non-functional. Malfunctian immune response; examples are a virus, bacteria, or splinte
also be considered a type of unwanted behavior. Any systdifie opposite to non-self antigens are self antigens; s¢ an
aimed at protecting a wireless sensor network should wogens are human organism’s own cells.
autonomously with none or a sporadic human intervention.

Motivated by results in [13], [21] we have undertaken !Self and non-self in short.

Il. ARTIFICIAL IMMUNE SYSTEMS



s range ofB and vice versa. The imposed symmetry of edges is
a usual assumption of many mainstream protocols. The change
i in the cardinality of set&(¢), e(t) can be caused by switching
GENERATE waTcH 0| DETECTOR on/off one of the sensors, failure, malfunction, removanal
STRING propagation, link reliability and other factors.
iVES Data exchange in a point-to-point (uni-cast) scenario llisua
e proceeds as follows: a user initiated data exchange Ieadg to
route query at the network layer of the OSI stack. A routing

protocol at that layer attempts to find a route to the data
Fig. 1. Detector generation by random-generate-and-teseps. Only strings exchange destination. This request may result in a path of

that do not match anything self become detectors. non-unit length. This means that a data packet in order to
reach the destination has to rely on successive forwardmng b
Ew intermediate nodes on the path. An example of an on-demand
STRINGS routing protocol designed specifically for ad hoc networks i
i DSR [15]. Route search in this protocol is started only when a
p— s po— route to a _destination is needed. This is done py flpoding the
sET MATCH NON-SELF network with RRE® control packets. The destination node

or an intermediate node that knows a route to the destination
Fig. 2. Recognizing non-self is done by matching detectdith suspected Will reply with a RREP control packet. This RREP follows
non-self strings. the route back to the source node and updates routing tables
at each node that it traverses. A RERR packet is sent to the
connection originator when a node finds out that the next node
B. Leaming on the forwarding path is not r_eplaying. o

' At the MAC layer, the medium reservation is often con-

The process of T-cells maturation in thymus is used &ntion based. In order to transmit a data packet, the IEEE
an inspiration for learning in AIS. The maturation of T-802.11 MAC protocol uses carrier sensing with an RTS-CTS-
cells (detectors) in thymus is a result of a pseudo-rand@yATA-ACK handshaké’. Should the medium not be available
process. After a T-cell is created (see Fig. 1), it undergogp the handshake fails, an exponential back-off algorithm
a censoring process calle@gative selectiarDuring negative js ysed. This is combined with a mechanism that makes it
selection T-cells that bind self are destroyed. Remaining dasier for neighboring nodes to estimate transmission-dura
cells are introduced into the body. The recognition of nomipns. This is done by exchange of duration values and their
self is then done by simply comparing T-cells that survivesibsequent storing in a data structure known as Network
negative selection with a suspected non-self. This proisessgllocation vector (NAV). With the goal to save battery power
depicted in Fig. 2. It is possible that the self set is inccetgl researchers suggested, a sleep-wake-up schedule for nodes
while a T-cell matures (tolerization period) in the thymtieis  would be appropriate. This means that nodes do not listen
leads to producing T-cells that should have been removen frgontinuously to the medium, but switch themselves off and
the thymus and can cause an autoimmune reaction, i.e. & le@fhke up again after a predetermined period of time. Such a
to false positives sleep and wake-up schedule is similarly to duration values

The random-generate-and-test approach for producing ekchanged among nodes. An example of a MAC protocol,
cells (detectors) described above is analyzed in [8]. Ireg®n designed specifically for sensor networks, that uses such a
the number of candidate detectors to the self set size needséhedule is the S-MAC [23]. A sleep and wake-up schedule
exponential (if a matching rule with fixed matching probagil can severely limit operation of a node fmomiscuous mode
is used). Another problem is a consistent underfitting of thg promiscuous mode, a node listens to the on-going traffic in
non-self set; there exist “holes” in the non-self set th@& athe neighborhood and collects information from the overthea
undetectable. In theory, for some matching rules, the numigckets. This technique is used e.g. in DSR for improved

of holes can be very unfavorable [22]. In practical terms, tfhropagation of routing information. For more information o
effect of holes depends on the characteristics of the nin-sgansor networks, we refer the reader to [16].

set, representation and matching rule [12]. The advantége o
this algorithm is itssimplicity and good experimental results V. AlIS FOR SENSORNETWORKS. DESIGN PRINCIPLES

in cases when the number of detectors to be produced ign our approach, each node produces and maintains its own
fixed and small [21]. A review of other approaches to detectggt of detectors. This means that we applied a direct one-to-
computation can be found in [2]. one mapping between a human body with a thymus and a
. SENSORNETWORKS node. We represent self, non-self and_ detecto_r stringst_as bi
_ ) _ strings. The matching rule employed is theontiguous bits
A sensor network can be defmedi in graph theoretic framﬁfatching rule Two bit-strings of equal length match under
work as follows: a sensor network is a n&t= (n(t),e(t)) the r-contiguous matching rule if there exists a substrifg o

where n(t),e(t) are the set of nodes and edges at tim@ngth, at positionp in each of them and these substrings
t, respectively. Nodes correspond to sensors that wish to

Comml_JniCa_Ie with _eaCh Oth(_?l’- An edge betV_VGen two _nO_ﬁeS 2RREQ = Route Request, RREP = Route Reply, RERR = Route Error.
and B is said to exist whem is within the radio transmission 3RTS = Ready to send, CTS = Clear to send, ACK = Acknowledgment.



are identical. Detectors are produced by the process showrailonger wake-up time and possible restrictions in pubdighi
Fig. 1, i.e. by means of negative selection when detectas afteep-wake-up schedules.
created randomly and tested against a set of self strings.  In [19] the authors applied a different set of genes. The

Each antigen consists of several gen€enesare per- observed set of events was the following: A = RREQ sent, B
formance measures that a node can acquire locally withuRREP sent, C = RERR sent, D = DATA sent and IP source
the help from another node. In practical terms this meaagdress is not of the monitored (neighboring) node, E = RREQ
that an antigen consists af genes; each of them encodegeceived, F = RREP received, G = RERR received, H = DATA
a performance measure, averaged in our case over a tigeeived and the IP destination address is not of the mewitor
window. An antigen is then created by concatenating the node (the DSR routing protocol was used). The events D and
genes. H take into consideration that the source and destinatiolesio

In choosing the correct genes for an AIS to be applie?f @ connection might appear as misbehaving as they seem to
to sensor networks, the choice can be limited due to th@eliberately” create and delete data packets. Then thefset
simplified OSI protocol stack of sensors. For example, Micdheir four genes is as follows:
sensors [1] using the TinyOS operating system do not guar#1 Number of E over a time period.
antee any end-to-end connection reliability (transpoyety ~ #2 Number of (E*(A or B)) over a time period.
leaving only data traffic at the lower layers for considenati #3 Number of H over a time period.

Let us assume that the routing protocol finds for a connec#4 Number of (H*D) over a time period.
tion the paths,,s1, ..., i, 8i41, Sit2, ..., 5¢ from the source  The time period (window size) in their case was 10s; *
nodes, to the destination node;, wheres, # s,. We have is the Kleene star operator (zero or more occurrences of
used the followinggenesto capture certain aspects of MACany event(s) are possible). Similar to our watchdog genes,
and routing layer traffic information (we averaged over aetinthese genes impose additional requirements on MAC pratocol
period (window size) of 500 seconds): such as the S-MAC. Their dependence on the operation in

MAC Layer: promiscuous mode is, however, more pronounced as a node

#1 Ratio of complete MAC layer handshakes betwed}fs to continuously observe packet events at all monitored

nodess; ands;; and RTS packets sent By to s;,,. If "°des. _
there isf no trg]:f}c betweenptwo nodes thiz ratizo+ils set to The research in the area of what and to what extent can be

o (a large number). This ratio is averaged over a tin}g should be locally measured at a node, is independent of the

period. A complete handshake is defined as a comple a\rning mechanism used (negative selection in both.cases)
sequence of RTS, CTS, DATA, ACK packets betwaen erformance of an AIS can partly depend on the ordering and
ands, 1. ' ’ ’ the number of used genes. As longer antigens (consisting of

#2 Ratio of data packets sent from to s,.1 and then more genes) indirectly imply more candidatg detectors, the
subsequently forwarded te;;o. If there is no traffic number_ O_f genes should be carefuI_Iy c_onS|dered. Giwen
between two nodes this ratio is set to (a large genes, it is possible to order them inh different ways. In
number). This ratio is computed by in promiscuous 24" experience, the rules for ordering genes and the number
mode. This ratio is also averaged over a time periofl 9€Nes can be summed up as follows: .

This gene was adapted from the watchdog idea in [20 1) Keep the number of genes sr_nall. In our experiments, we

#3 Time delay that a data packet spendssat; before how that with respect to the learning mechanism used and the
being forwarded t®;, . The time delay is observed byexpected _deploymgnt (sensor networks), 2-3 genes are knoug
s; in promiscuous mode. If there is no traffic betweeFPr dete((:jtlng a basm_tape of misbehavior. .
two nodes the time delay is set to zero. This measure js2) Order genes either randomly or use a predetermined

averaged over a time period. This gene is a quantitati éc_ier. Both of these possibilities are co_njputationallgridly_
extension of the previous gene with respect to sensor networks). Defining a utility redati

Routing Layer: between genes, and ordering genes wit_h respect to it can, in
#4 The same ratio as in #2 but computed separately ﬁ;ﬁneral, lead to problems that are 90n5|dered mtrac_table.
RERR routing packets. 3) Produce several types of antigen. These antigens can
#5 The same delay as in #3 but computed separately re genes but the numberpf genes per type of antigen S.hOUId
RERR routing packets. e limited. The advantage is that the number of candidate
) ) o detectors necessary for negative selection stays smallipiéu
The Gene #1 is MAC protocol oriented, the remaining on@gne membership with randomized ordering could additignal
are watchdog onent_ed. The first gene can also be charamderigpag to an improved robustness of the underlying AIS, espe-
as MAC layer quality oriented -+ indirectly measures the cjally, when one misbehaving node can be detected by several
medium contention levewhereas the remaining ones arginer nodes.
misbehavior oriented. As we will show later, in the parta@ul oy experiments show that genes cannot be considered in
type of misbehavior (probabilistic packet dropping) tha Wiso|ation, i.e. when a detector matched an antigen under the

applied, the first two genes come out as “the strongest’contiguous matching rule, usually this match spanned over
The disadvantage of the watchdog based genes is that dd@eral genes.

to limited battery power, nodes could operate using a sleep- ] _

wake-up schedule similar to the one used in the S-MAC. Ths Learning and Detection

would mean that the nodg has to stay awake until the node Learning and detection is done by applying the mechanisms
s;+1 correctly transmits tes;, 2. The consequence would beshown in Figs. 1 and 2. The detection itself is very straightf



ward. In the learning phase, a misbehavior-free period[@3ee to rely to some extent on information exchange among nodes,
on possibilities for circumventing this problem) is ne@ys thus making this a natural solution to the problem. We have
so that nodes get a chance to learn what is the normal behauvised this approach; a post-processing phase, that usdd avai
When implementing the learning phase, the designer getsatale routing information, was necessary to determine véreth
choose from two possibilities: a node was correctly flagged as misbehaving or not.

1) Learning and detection at a node get implemented for\We find the second approach to be more suited for wireless
each neighboring node separately. This means that differéansor networks. In Fig. 3(b), we illustrate the computetio
antigens have to get computed for each neighboring node, geguirements of the negative selection process, if exdcute
tector computation is different for each neighboring nodd ain a single instance. We believe that a complete detector set
then, subsequently, detection is different for each nesghly computation will be very infrequent.
node. The advantage of this approach is that the node is aplBichr is the correct one?
to directly determine which neighboring node misbehaves; t An interesting technical problem is to tune th@arameter
disadvantage is that instances:( is the number of neighbors for the r-contiguous matching rule so that the underlying AIS
or node degree) of the negative selection mechanism ha&fters good detection and false positives rates. One pitissib
to get executed; this can be computationally prohibitive fds a lengthy simulation study such as the one described in [9]
sensor networks as: can, in general, be equal to the totallhrough multiparameter simulation we were to able to show
number of sensor. This allows for an easy Sybil attack [1i#atr = 10 offers the best performance for our setup. In [10]
in which a neighbor would create several identities; theenotve experimented with the idea of “growing” and “shrinking”
would then be unable to recognize that these identitiesnigelodetectors; this idea was motivated by [14]. The initiglfor
to the same neighbor. This approach was used in [21], [19p growing detectors can be chosenrgs= [l/2], wherel

2) Learning and detection at a node get implemented in'Sithe detector length. The goal is to find the smallesuch
single instance for all neighboring nodes. This means a ndiiét & candidate detector does not match any self antigés.. Th
is able to recognize anomaly (misbehavior) but it may HB€ans that a candidate detector gets randomly createdeamd th

unable to determine which one from theneighboring nodes €Sted against the self set. Initially, a larger (more Spmor
misbehaves. This implies that nodes would have to cooperi&hosen; the smallestthat fulfills the above condition can
when detecting a misbehaving node, exchange anomaly infBf found through binary search. For shrinking detectors, th
mation and be able to draw a conclusion from the obtain@@Proach is reciprocal. Our initial goal was to show thahsuc
information. An argument for this approach is that in oraer 3roWing or shrinking detectors would offer a better detseti

detect nodes that misbehave in collusion, it might be necgss®! false positives rate. Short of proving this in a stattic
significant manner, we observed that the growing detectms c

be used for self tuning the parameter. The averagevalue
was close to the that we determined through simulation (the

10 Number of detectors = 2000 setup in this case was different from the one described here)
10% —+—

%) R | B. Further Optimizations

ol Our experiments show that only a small number of detectors

get ever used (less than 5%). The reason for that is that they

get produced in a random way, not considering structureeof th

20 protocols. For example, a detector that is able to detecthehne

. i) data packets got correctly transmitted and ii) 100% of all

500 O e 4000 MAC layers handshakes were incomplete is superfluous as this
case should never happen. In [6], the authors conclude:

uniform coverage of non-self space is not only unnecesgary,

40 £ S

Detection rate [%]

(a) Detection rate vs packet threshold; conf.
interval ranges: for mis. level0% is cigsy,

= 3.8-19.8%; for30% is ciggo; = 11.9-15.9%; is impractical; non-self space is too bigApplication driven
for 50% is cigge, = 11.0-14.2%. knowledge can be used to set up a rule based system that
would exclude infeasible detectors; see [7] for a rule based
100 - system aimed at improved coverage of the non-self set. fjp [13

it is suggested that unused detectors should get deletetthand
lifetime of useful detectors should be extended.

10 e o C. Misbehavior
) In a companion paper [11] we have reviewed different

types of misbehavior at the MAC, network and transport
layers of the OSI protocol stack. We note that solutions to

Real time used [s/node]

s00 1000 2000 4000 many of these attacks have been already proposed; these are
Desired number of detectors however specific to a given attack. The appeal of AIS based
(b) Real time to compute the desired number of misbehavior detection rests on its simplicity and appliligb

detectors at a nodeigss; < 1%. in an environment that is extremely computationally and

bandwidth limited. Misbehavior in sensor networks does not

Fig. 3. Performance of misbehavior detection.
have to be executed by sensors themselves; one or several



computationally more powerful platforms (laptops) can be We used 10 CBR (Constant bit rate) connections; the CBR
used for the attack. On the other hand, a protection usidgta traffic may not correspond to “real” sensor networKitraf
such more advanced computational platforms is, due toleeg. however, there is no much practical experience with these
need to supply them continuously with electric power, hardg/pes of networks, and the data traffic pattern can subsatbnti
to imagine. It would also create a point of special interest fvary in the future. The connections were chosen so that their

the possible attackers. length is~7 hops and so that these connections share some
common intermediate nodes; see [9] for a visualization ef th
V. EXPERIMENTAL SETUP network and the connections. For each packet received or sen

by a node we have captured the following information: IP
In [9] we showed that AIS can be efficiently used foheader type (UDP, 802.11 or DSR in this case), MAC frame
detecting misbehavior in sensor networks. In this document type (RTS, CTS, DATA, ACK in the case of 802.11), current
provide an in-depth analysis of relative usefulness of gengimulation clock, node address, next hop destination addre
the variability of antigens and the efficiency of the negativdata packet source and destination address and packet size.
selection learning process. The experimental setup idaimi Encoding of self and non-self antigen€ach of the five
to [9]; the focus of performance analysis is however diffétre genes was transformed in a 10-bit signature where each bit
Definitions of input and output parameter§he input defines an intervalof a gene specific value range. We created
parameters for our experiments wereparameter for the r- self and non-self antigen strings by concatenation of the
contiguous matching rule, the (desired) number of detsctodefined genes. Each self and non-self antigen has therefore
misbehavior level and traffic rate at nodes. Misbehavior wassize of 50 bits. The interval representation was chosen in
modeled as random packet dropping at selected nodes. order to avoid carry-bits (the Gray coding is an alternative
The performance (output) measures were arithmetic aveolution).
ages and 95% confidence intervalsso, of detection rate,  Constructing the self and non-self sete have randomly
number of false positives, real time to compute detectats dchosen 28 non-overlapping 500-second windows in our 4-
traffic rate at nodes, number of different antigens in a ruhpur simulation. In each 500-second window self and noh-sel
and number of matches for each gene. The detectiondrateantigens are computed for each node. This was repeated 20
is defined as*, wheredns is the number of detected non-times for independent Glomosim runs.
self strings andhs is the total number of non-self strings. A Misbehavior modelingMisbehavior is modeled as random
false positive in our definition is a string that is not selft budata packet dropping (implemented at the network layea dat
can still be a result of anomaly that is identical with theeets packet8 that should get dropped will simply not be inserted
of a misbehavior. A non-valid detector is a candidate deteciinto the IP queue); we have randomly chosen 236 nodes and
that matches a self string and must therefore be removed. These were forced to drofd 0, 30, 50%} of data packets. How-
number of matches for each gene was evaluated using-thesver, there were only 3-10 nodes with misbehavior and with
contiguous matching rule; we considered two cases: i) twpstatistically significant number of packets for forwagdin
bit-strings get matched from the left to the right and thet firgach simulation run.
such a match will get reported (matching gets interrupted), Simulation phasesthe experiment was done in four phases.
i) two bit-strings get matched from the left to the right and 1) 20 independent Glomosim runs were done for one of
all possible matches will get reported. There is a notable {10,30,50% )} misbehavior levels and “normal” traffic
performance differenéebetween these two approaches. The witH nc; misbehavior.
first approach is exactly what we used when computing they) geif and non-self antigen computation (encoding).
real time necessary for negative selection, the §econd)appr ?) The 20 “normal’” traffic runs were used to compute
was used when our goal was to evaluate relative usefulness of” yatactors. Given the 28 windows and 20 runs, the sample

each gene. o size was 2628 = 560, i.e. detectors at each node were
Scenario description: We wanted to capture “self” and discriminated against 560 self antigens.

“non-self” packet traffic in a large e_nough synthetic static 4) Using the runs with{10, 30,50%} misbehavior levels,
sensor network and test whether using an AIS we are able ~ ¢ process shown in Fig. 2 was used for detection; we
to recognize non-self, i.e. misbehavior. The topology a$ th restricted ourselves to nodes that had in both the normal

network was determined by making snapshotof 1,718 and misbehavior traffic at least a certain number of data
mobile nodes (each with 100m radio radius) moving in a packets to forward (packet threshold).

square area of 2,900x2,950m as prescribed by the random
waypoint mobility model [15]. The motivation in using this
movement model and then creating a snapshot are the results
our previous paper [5] that deals with structural robustreds
sensor network. We chose source and destination pairsdéar e
connection so that several alternative independent rexiss
the idea was to benefit from route repair and route acquisiti
mechanisms of the DSR routing protocol, so that the addeq
value of AIS based misbehavior detection is obvious.

The experiment was then repeated with differendesired
mber of detectors and misbehavior level.

he parameters for this experiment are summarized in
gig. 4. The injection rate and packet sizes were chosen in
order to comply with usual data rates of sensors (e.g. 3@<gikb
Bor Mica2; see [1]). We chose the Glomosim simulator over

The interval encoding of genes is adapted from [21]. This waly one
of the 10 bits is set to 1, i.e. there are only 10 possible viduels that it is
possible to encode in this case.

4Both areO(r(l — 7)) s.t.r < I, wherel is the bitstring length. In the  ®Data packets include both data packets from the transpget & well as
second case, all— r comparisons must be done. routing protocol packets.



1)
2)
3)
4)

5)

6)
8)

Negative selection algorithm: random-generate-astl-teaplemented in C++, compiled with GNU g++ v4.0 with -O3tiop.
Input parameters: 1. r-contiguous matching rule with = {7,10, 13,16, 19, 22}. 2. Encoding: 5 genes each 10 bits long
50 bits. 3. Number of detectors500, 1000, 2000, 4000}. 4. Misbehavior leveK10, 30,50%} 5. Window size 500 seconds; 2|
complete windows over 4-hour simulation time.

Performance measures:real time to compute detectors, detection rate, rate ofvadid- detectors, data traffic rate at node
number of different antigens in a run, number of matches &mhegene; their arithmetic averages and 95% confidencevatser
Network topology: Snapshot of movement modeled by random waypoint mobilitglehde. it is a static network. There wer
1,718 nodes. The area was a square of 2,90R/850m. The transmission range of transceivers was 100rgnete

Number of connections:10 CBR (constant bit rate) connectioMdAC protocol : IEEE 802.11b DCFRouting protocol: DSR.
Other parameters: (i) Propagation path-loss model: two(ifagChannel frequency: 2.4 GHz (iii) Topography: Line-sifjht (iv)
Radio type: Accnoise (v) Network protocol: IPv4 (vi) Contien type: UDP.

Injection rate: 1 packet/second. 14,400 packets per connection were edieBPacket size was 512 bytes.

The number of independent simulation runs for each coatioin of input parameters was 20. The simulation time was o
Simulator used: GlomoSim 2.03; hardware used::8Qinux (SUSE 10.0) PC with 2GB RAM and Pentium 4 3GHz microgssor.

Fig. 4. Parameters used in the experiment.
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threshold> 14. an antigen in a run. Conf. interval range o< an antigen in a window; each run has 28 win-
r < 13is cigsy = 6.5-10.1%. dows. Conf. interval rangesigso, < 0.16%.
Fig. 5.  Window threshold and detector related performaneasures.
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other options (most notably ns2) because of its betterrggaliOtherwise, we would increment the “multiple” counter (for

characteristics and our familiarity with the tool. this and remaining figures both the C1 and C2 constrain had
to be met). It is obvious that with increasingit gets more and
VI. RESULTSEVALUATION more probable that a detector would match more than a single

; : - iene. The interesting fact is that the detection rate fdn bet
Str\ggg evaluating our results we define two additional CO'? andr = 10 is in both cases at about 80% (see Fig. 3(a)). This
) . . ... _means the increasedlid not substantially help to increase the
Cl. We def"?e a node to be detected as mlsbe.havmg if it 98t ection rate. The main difference is the real time to campu
flagged in at least 14 out of the 28 possible windowg,q get of 2,000 detectors (see Fig. 3(b)) and the rate of non-
This notion |nd|rectly dEf'”e$ the time unt|! a node igajig detectors [9] (detectors that got rejected becausyg th
pronounced to be misbehaving. We call thisveadow matched a self string; see Fig. 1).
Fig. 6(c) shows the performance of Gene #1. The number

threshold
C2. A nodes; has to forward in average at leastpackets ot matches shows that this gene contributed to the overall

over the 20 runs in both the “normal” and misbehavio . .
) . . o etection performance of our AIS. Figs. 7(a-c) sum u er-
cases in order to be included into our statistics. Th(lj P 9 (a-c) PP

. . ; fBrmance of the five genes for different values-of\gain, an
constraint was set in o_rder to make th‘? detec_tlon proc‘?ﬁ?eresting fact is the contribution of Gene #1 to the oueral
more reliable. It is dubious to flag a neighboring node Qg e ction performance. The usefulness of Gene #2 was yargel
si as ”"_'Sbeha‘('”gz if it IS based on “normal” runs or runExpected as this gene was tailored for the kind of misbehavio
with misbehavior, in which node; had no data packets 3¢ \ve implemented. The other three genes came out as
to forward (he was not on a routing path)_, We call thlFnarginally useful. The importance of the somewhat sunpgisi

a packet thresholdm was in our simulations chosenpe formance of Gene #1 is that it can be computed in a

from {500, 1000, 2000, 4000}. Example:for a fixed set ¢imnjistic way and does not require continuous operatioa of
of input parameters, a node forwarded in the “norma

runs in average 1,250 packets and in the misbehavio
runs (with e.g. level 30%) 750 packets. The noge
would be considered for misbehavior detectionrif=
500, but not if m > 1000. In other words, a node has
to get a chance to learns what is “normal” and then
use this knowledge on a non-empty packet stream. p

In Fig. 5(a) we show the total number of runs in which a
node was identified as misbehaving (for this and remaining VII. RELATED WORK
figures, the C1 constraint had to be met). The steep declindn [21], [19] the authors introduced an AIS based misbe-
for valuesr > 10 (in this and other figures) documents thahavior detection system for ad hoc wireless networks. They
in these cases it was necessary to produce a higher numisd Glomosim for simulating data traffic, their setup was an
of detectors in order to cover the non-self antigen space. Tarea of 80&x600m with 40 mobile nodes (speed 1 m/s) of
higher ther, the higher is the specificity of a detector, thisvhich 5-20 are misbehaving; the routing protocol was DSR.
means that it is able to match a smaller set of non-self amtigeFour genes were used to capture local behavior at the network
In Fig. 5(b) and (c) we show the number of detectors th&tyer. The misbehavior implemented is a subset of misbehavi
got matched during the detection phase (see Fig. 2). Fig. (byroduced in this paper; their observed detection ratd @it
shows the number of detectors matched per run, Fig. (c) shawg9. Additionally, a co-stimulation in the form of a danger
the number of detectors matched per window. Fig. (b) is aignal was used in order to inform nodes on a forwarding
upper estimate on the number of unique detectors needed ipagh about misbehavior, thus propagating information &bou
single run. Given that the total number of detectors was@®,00nisbehaving nodes around the network.
there were less than 5% detectors that would get used in thén [13] the authors describe an AIS able to detect anomalies
detection phase. The confidence interVdts the number of at the transport layer of the OSI protocol stack; only a wired
unigue detectors matched per window (see Fig. (c)) is adir@CP/IP network is considered. Self is defined as normal
consequence of the small variability of antigens as shown pairwise connections. Each detector is represented as a 49-
Fig. 6(a). bit string. The pattern matching is based on r-contiguots bi
Fig. 6(a) shows the number of unique antigens that wendth a fixedr = 12.
subject to classification into self or non-self. The averlge  Ref. [17] discusses a network intrusion system that aims
r = {7,10} is about 1.5. This fact does not directly implyat detecting misbehavior by capturing TCP packet headers.
that the variability of the data traffic would be inadequat&hey report that their AIS is unsuitable for detecting anbesa
It is rather a direct consequence of our choice of genes andcommunication networks. This result is questioned in [4]
their encoding (we only used 10 value levels for encodingkhere it is stated that this is due to the choice of problem
Fig. 6(b) shows the number of matches between a detectepresentation and due to the choice of matching threshold
and an antigen in the following way. When a detector undér r-contiguous bits matching.
the r-contiguous matching rule matches only a single geneTo overcome the deficiencies of the generate-and-test ap-
within an antigen, we would increment the “single” counteproach a different approach is outlined in [18]. Severahalg
each having a different function are employed in order to
"For practical reasons we shatyse, only for 7 < r < 13. detect a specific misbehavior in sensor wireless networks.

The detailed results regarding the (general) performafice o
our AIS were already discussed in [9]. In short, we found out
that a detection rate of above 80% at a moderate rate of false
ositives is possible for sensor networks. We also condude
at the real time needed to compute a detector set may not
e prohibitively high for sensor networks.
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