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Abstract We propose and evaluate an immuno-inspired approach for misbehavior

detection in ad hoc wireless networks. Misbehavior is the result of an intrusion, or

a software or hardware failure. Our misbehavior detection approach is inspired by

the role of co-stimulation and priming in the Biological immune system (BIS). We

translate priming into a computational paradigm that can increase robustness as well

as stimulate energy efficiency of misbehavior detection. We provide a detailed energy

consumption analysis with respect to the IEEE 802.11 and IEEE 802.15.4 protocols.

We analyze the efficiency of misbehavior detection with co-stimulation and priming.

This analysis is complemented with experimental results. We show that co-stimulation

and priming introduce new options such as the ability to choose a trade-off between

detection performance and energy efficiency. We provide a summary of the challenges

related to the design of co-stimulation and priming based architectures. We argue that

co-stimulation and priming are rather general paradigms with possible applications in

other areas than misbehavior detection.
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1 Introduction and Motivation

Ad hoc and sensor wireless networks can become an object of attacks and intrusions.

The motivation for attacking an ad hoc network can range from a desire to benefit from

the network’s services to an intent to make it non-functional. Faults that are a result

of software or hardware failures can be equally damaging. Correcting the consequences

of some faults or attacks might only be possible by a costly human intervention, or

not at all. Even though secure protocols address issues connected with data integrity

and user authentication, the experience with the Internet shows that flaws in these

protocols are continuously being found and exploited (Yegneswaran et al 2003).

This establishes the basic motivation for designing autonomous detection and re-

sponse systems that aim at offering an additional line of defense to the employed secure

protocols. Such systems should provide several layers of functionality including the fol-

lowing: (i) distributed self-learning and self-tuning with the aspiration to minimize

the need for human intervention and maintenance and (ii) active response with focus

on attenuation and possibly elimination of negative effects of faults or attacks on the

network.

In many scenarios, ad hoc and sensor networks are expected to be based on wireless

devices with limited (battery) resources. In order to stimulate the survivability of such

networks (Sterbenz et al 2002), it is essential that autonomous detection and response

systems reflect these resource constraints.

Best current practices for misbehavior detection in ad hoc wireless networks are

almost exclusively done on a domain knowledge basis; see (Anantvalee and Wu 2007)

and references therein. Although such an approach allows us to find a good predictor

for a specific type of misbehavior, it fails to provide a misbehavior detection framework

that would offer good extensibility towards new misbehavior types. Furthermore, the

area of energy efficient misbehavior detection remains to be an open problem.

We assume that upon deployment of an ad hoc network, an enforcement of op-

erational strategies in an energy efficient way is desired. Such operational strategies

may impose performance limits in the form of e.g. the maximum data packet loss at

a node. One possibility for determining whether a node keeps forwarding data packets

is monitoring by other nodes. This is however a very costly approach since the moni-

toring nodes cannot enter sleep mode to preserve their energy resources. It is therefore

necessary that monitoring will be kept to a minimum.

Our contribution is an approach offering a reasonable trade-off between energy

efficiency and misbehavior classification performance. Our solution is an algorithm

that allows for energy efficient misbehavior detection that can also be applied to just

deployed ad hoc networks. Since the nodes in such ad hoc networks were not given the

time required to observe and analyze the events and states of their neighboring nodes,

they lack the data basis necessary for an efficient learning of the normal behavior and

misbehavior.

To stimulate energy efficiency, we exploit an inherent property of ad hoc networks.

This property characterizes the relationship between continuous and time window

based data traffic monitoring. In the former case, each data packet is overheard and

analyzed by a neighboring node, whereas in the latter case a data traffic statistic using

a fixed size time window is being computed by two neighboring nodes. The statistics

computed by these two nodes are then compared and analyzed. Energy efficiency as

well as capability of our approach to suppress false positives is achieved by combining

continuous and time window based data traffic monitoring. This mixed design also facil-
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itates tuning detection rate and false positives rate in an independent way. This is due

to the fact that the detection rate is influenced by the detection performance of time

window based data traffic monitoring, whereas the false positives rate is influenced by

the efficiency of continuous data traffic monitoring. Combining these two types of data

traffic monitoring is inspired by the role of the innate and adaptive immune systems

and by their ability to communicate.

This document is organized as follows. In Section 2, we discuss the basic princi-

ples of the Biological immune system. In Section 3, we review the related work. In

Section 4, we introduce ad hoc networks. We also summarize several relevant com-

munication protocols and their assumptions. In Section 5, we introduce several types

of misbehavior and explain our approach to classification performance evaluation. In

Section 6, we introduce co-stimulation and priming as computational paradigms for ad

hoc networks. In Section 7, we present our experimental setup. In Section 8, we discuss

the performance of the proposed priming approach. In Section 9 we summarize the

research challenges. In Section 10, we summarize the results and conclude.

2 The Biological Immune System

The Biological immune system (BIS) (Murphy et al 2008) can quickly recognize the

presence of foreign microorganisms in the human body. It is remarkably efficient in

correctly detecting and eliminating pathogens such as viruses, bacteria, fungi or para-

sites. When confronted with a pathogen, the BIS often relies on a coordinated response

from both of its two vital parts:

– the innate system: the innate immune system is able to recognize the presence of a

pathogen or tissue injury, and is able to signal this to the adaptive immune system.

– the adaptive system: the adaptive immune system can develop during the lifetime

of its host a specific set of immune responses and provide immunological memory.

Immunological memory serves as a basis for a stronger immune response, should a

pathogen re-exposure happen.

The form and amplitude of immune responses is pathogen dependent. Often, an

immune response within the BIS is based on a feedback mechanism between the innate

and adaptive immune systems. Such a feedback can result in a feedback loop, in which

the innate immune system further stimulates the adaptive immune system, and vice

versa (Frauwirth and Thompson 2002). For example, a pathogen gets eliminated, if

it was recognized by the adaptive immune system as a pathogen, and at the same

time, the innate immune system signals that this pathogen causes some damage to

the human organism. Under this specific immune reaction, only damage inflicting or

infectious cells get eliminated by the BIS.

This demonstrates that a two-way communication, hereafter referred to as co-

stimulation, between the innate and adaptive immune systems is common. Immunol-

ogists such as Frauwirth and Thompson describe co-stimulation as the involvement

of ”reciprocal and sequential signals between cells” in order to fully activate a lym-

phocyte (Frauwirth and Thompson 2002). The role of lymphocytes is to recognize a

specific pathogen, to trigger a corresponding immune reaction, in some forms they are

also capable of pathogen elimination.

Priming in the BIS describes the effects of a first encounter of an immune cell with a

pathogen. More specifically, immunologists define priming as the activation and clonal
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expansion of certain immune cells into effector cells that are then capable of inducing

a full immune response against a specific pathogen.

Communication capabilities within the BIS received an increased interest from the

Artificial immune systems (AIS) community and evolved into an independent research

direction. Several different types of danger, safe and amplifying signals were proposed

within the Danger theory due to Aickelin et al. (Aickelin et al 2003).

In our work, we were motivated by the ability of the BIS to act in a coordinated way

when confronted with a pathogen. Our misbehavior detection approach is inspired by

the role of co-stimulation and priming in the BIS. We translate priming into a feasible

computational paradigm. We show that co-stimulation and priming in ad hoc networks

not only increases the overall misbehavior detection robustness but also introduce new

options such as the ability to choose a trade-off between detection performance and

energy efficiency.

3 Related Work

Co-stimulation as an approach for misbehavior detection received thus far only a limited

interest from the research community.

In one of the first BIS inspired works, Hofmeyr and Forrest described an AIS able

to detect anomalies in a wired TCP/IP network (Hofmeyr and Forrest 1999). Anomaly

detection was based on the negative selection algorithm (Forrest et al 1994). After this

mechanism detected an anomaly, a message was sent to a human operator. He was

given 24 hours to confirm a detected attack. This means, two qualitatively different

sorts of classification were used: negative selection and human expertise. The second

approach is only applied, if a co-stimulation in the form of a message is received.

Sarafijanović and Le Boudec introduced an AIS for misbehavior detection in mo-

bile ad hoc wireless networks (Sarafijanovic and Le Boudec 2004). A local mechanism

applied by each node in the network required a co-stimulation in order to classify a

neighbor as misbehaving. The origin of co-stimulation was a TCP connection source

that perceived data losses. The information about a perceived data loss was forwarded

along the connection. The authors observed that their form of co-stimulation reduces

the false positives rate. The disadvantage of their approach is its tight coupling with a

transport layer protocol (TCP), thus negatively influencing energy consumption.

Drozda et al. proposed in (Drozda et al 2010) a co-stimulation based approach to

misbehavior detection in ad hoc wireless networks. Their observations were two-fold:

co-stimulation can help reduce the energy consumption of misbehavior detection and

it also significantly reduces the false positives rate. Their approach does not rely on a

transport protocol as a source of co-stimulation. Instead, it benefits from the differences

in energy efficiency and detection performance, when misbehavior classification is done

in a cooperative way and a centralized way. The less energy efficient approach is applied

only if the other one detects a misbehavior, i.e. the first type of classification provides

co-stimulation for the other type of classification.

Even though our research focus stays on co-stimulation and its suitability for mis-

behavior detection, we would also like to offer insight into related approaches not taking

advantage of this technique.

Marti et al. introduced in (Marti et al 2000) two techniques for data dropping

detection in ad hoc networks: watchdog and pathrater. A watchdog allows for collecting

traffic information about neighboring nodes using promiscuous radio mode. Based on
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this information, a pathrater can assess route reliability, thus maximizing the chance

that data packets get correctly delivered. Due to the energy consumption connected

with operation in promiscuous node, the watchdog technique is not suitable for energy

constrained ad hoc networks, even though, it offers high data packet dropping detection

rates (Drozda et al 2010).

Hu et al. introduced two approaches using packet leashes for wormhole detection in

mobile wireless networks (Hu et al 2003, 2006). A wormhole is an out-of-band connec-

tion between two devices which allows an attacker to manipulate the network topology

and thus the routing of packets. A leash either consists of an authenticated timing or

location based information. A metric calculating whether a packet has traveled fur-

ther than allowed (or physically possible) is applied to the leashes. While the first

approach requires a tightly time synchronized network, the other one requires GPS

(Global Positioning System) based geographical information. The disadvantage of the

former approach is the increased message and authentication complexity, the disadvan-

tage of the latter approach is the increased energy consumption connected with GPS

device operation.

Huang and Lee introduced a cooperative approach for intrusion detection in ad hoc

networks (Huang and Lee 2003). It takes advantage of a comprehensive set of 141 data

traffic features. The sampling rate for the feature computation was 5 seconds. It applies

a decision tree for the classification of traffic samples based on these features. It thus

requires a learning period in which the classifier gets trained. To improve the energy

efficiency of their approach, a cooperative approach is considered. Under this approach

a clique of nodes elects a cluster head. This cluster head does network monitoring on

behalf of other clique members until a new cluster head is elected. The disadvantage

of such an approach is the necessity to overhear the data traffic in promiscuous mode

and to reelect new cluster heads so that the monitoring load gets evenly distributed

among the clique members.

Bhuse et al. proposed an approach for data packet dropping detection that does

not rely on promiscuous mode (Bhuse et al 2005). In their approach each connection

destination node sends to the source connection node a statistic about received data

packets. This is done over an alternative route that is computed by the routing protocol.

The received statistic is then compared with a similar statistic computed by the source

node. Based on this, the source node can decide whether all nodes on the connection

cooperate in data packet forwarding. This approach does not allow for detecting the

individual misbehaving node. The energy consumption overhead of this approach when

the DSR protocol is used for alternative route discovery is 0.6-2.6% for paths of length

3 to 13 hops. The ability of this approach to find an alternative route decreases as the

number of data dropping nodes increases as well as with the connection length. For

example, when 10% nodes are dropping data packets the reported success rate is about

75% and 25% for route lengths of 3 and 13 hops, respectively.

Gonzales et al. proposed an approach for data dropping detection in ad hoc net-

works (Gonzalez et al 2007). Their approach is based on the principle of flow conserva-

tion. Under this approach, it is assumed that the number of data packets, that a node

receives, equals the number of data packets that it forwards excluding the cases when

the given node is also the destination node. Whether a node forwards data packets

is determined by its neighbors in promiscuous mode. The focus of their experimental

evaluation was to determine the ratio of data packets that a node is allowed to drop

without being detected. This ratio is measured relative to the maximum number of data
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packets that a node is allowed (or expected) to drop. Their experimental evaluation

shows that this ratio is about 10-15%.

Krishnamurthy et al. introduced a machine learning misbehavior detection ap-

proach for wireless sensor networks (Krishnamurthy et al 2009). They considered sev-

eral misbehavior types: continuous signal jamming, signal jamming applied only if there

is other radio transmission detected, data packet redirecting and data packet dropping.

The latter misbehavior type required data traffic observation in promiscuous mode.

Classification was done using a linear discriminant analysis and/or a fixed-width clus-

tering with different distance measures. They tested their approach on a sensor network

based on Crossbow MicaZ motes and TinyOS. The memory footprint of their approach

was 31,342 bytes and 3,500 bytes of flash memory and data memory, respectively. The

reported detection accuracy for data packet dropping was nearly 100% with linear

discriminant analysis applied.

With respect to the above reviewed work, our goal was to benefit from the capabil-

ity of co-stimulation to suppress false positives. At the same time, due to energy effi-

ciency concerns we aimed at minimizing any overhearing in promiscuous mode. When

evaluating the energy efficiency of our approach, we compare against watchdog based

misbehavior detection. Watchdog based misbehavior detection offers solid detection

performance in scenarios where the ambition is to identify a specific node executing

data dropping, data delaying or a similar misbehavior type (Drozda et al 2010). Such

a solid detection performance makes it straightforward to understand the trade-off

between detection performance and energy efficiency, i.e. to understand whether any

decrease in detection performance was matched by an increase in energy efficiency.

The main discerning factor between our approach and the approaches reviewed

above is that our approach develops a conceptual framework for misbehavior detection

in ad hoc wireless networks. The reviewed approaches concentrate on achieving an

acceptable misbehavior detection performance, whereas we attempt to provide a means

that offers the possibility to influence the detection rate, the false positives rate and

the energy efficiency in a controlled manner. This allows us to provide insight on how

these three objectives influence each other.

4 Protocols and Assumptions

We now summarize the definitions, protocols, mechanisms and assumptions relevant

to our misbehavior detection approach and the related performance evaluation.

We assume that an ad hoc network is a net N = (n(t), e(t)) where n(t), e(t) are

the set of nodes and edges at time t, respectively. Nodes correspond to wireless devices

that wish to communicate with each other. An edge between two nodes A and B is said

to exist when A is within the radio transmission range of B and vice versa. A sensor

network is a static ad hoc network deployed with the goal to monitor environmental

or physical conditions such as humidity, temperature, motion or noise.

The acquisition of a route between two arbitrary nodes in an ad hoc network is done

by a routing protocol. We use the AODV routing protocol (Perkins and Royer 1999).

AODV is an on-demand routing protocol that starts a route search only when a route

to a destination is needed. This is done by flooding the network with RREQ (= Route

Request) control packets. The destination node or an intermediate node that knows

a route to the destination will reply with a RREP (= Route Reply) control packet.

This RREP follows the route back to the source node and updates routing tables at
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each node that it traverses. A RERR (= Route Error) packet is sent to the connection

originator when a node finds out that the next node on the forwarding path is not

replying. Each node maintains a routing table that contains the information about

destination nodes with known routes, their distance in terms of hop count and the

next hop node for a given destination.

In order to avoid data transmission by several neighboring nodes at once, the ac-

cess to the wireless medium needs to be coordinated. This is often done on a medium

contention basis. When attempting to transmit a data packet, the IEEE 802.11 MAC

protocol (IEEE Std. 802.11 2007) uses carrier sensing followed by an RTS-CTS-DATA-

ACK handshake (RTS = Ready to send, CTS = Clear to send, ACK = Acknowledg-

ment). The RTS-CTS-DATA-ACK handshake can be optionally disabled. This happens

if the data packet size is equal or smaller than the RTS threshold. The default value

for this threshold is 2432 bytes. The threshold can be adjusted as required by the

data traffic pattern. The max. data rate for IEEE 802.11b and IEEE 802.11g protocols

is 11Mbit/s and 54Mbit/s, respectively. They both operate in the 2.4GHz frequency

band. Other MAC protocols such as the 802.15.4 MAC protocol (IEEE Std. 802.15.4

2003) avoid using the RTS-CTS-DATA-ACK handshake, only relying on carrier sensing

to access the medium, in order to decrease energy consumption at nodes. This protocol

is aimed at low data rate wireless networks such as sensor networks. The max. data

rate is 250kbit/s.

In promiscuous mode, a node listens to the on-going traffic among other nodes in

the neighborhood and collects information from the overheard packets. Promiscuous

mode is energy inefficient because it prevents the wireless interface from entering sleep

mode, forcing it into either idle or receive mode. There is also extra computational

overhead caused by analyzing all overheard packets. According to (Feeney and Nilsson

2001), power consumption in idle and receive modes is about 12-20 higher than in sleep

mode.

We do not assume any node location knowledge or time synchronization among

nodes. We assume that packets are authenticated, i.e. the originator of any packet as

well as changes in the packet body can be easily identified. This is a reasonable assump-

tion in-line with e.g. the ZigBee specification (ZigBee Alliance 2005). This requirement

can be relaxed in cases when the goal is to detect software or hardware failures rather

than some more severe instances of malicious misbehavior executed after a node intru-

sion.

5 Misbehavior Modeling and Classification Performance Evaluation

Node misbehavior can be the result of an intrusion, or a software or hardware failure. For

the purpose of our experimental evaluation we consider three misbehavior types: data

packet dropping (qualitative misbehavior), data packet delaying (quantitative misbe-

havior) and wormholes (topology related misbehavior) (Hu et al 2006). In data packet

dropping, the misbehaving node drops a given data packet randomly and uniformly

with probability α. In data delaying, the misbehaving node delays the forwarding of a

given data packet randomly and uniformly with probability β by a fixed delay amount

δ. Wormholes are private (out-of-band) links between one or several pairs of nodes.

They are added by an attacker in order to redirect data traffic and thus gain control

over packet routing. Wormholes are an example of misbehavior done by several nodes

in collusion, whereas the other two types are done by individual nodes.
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The approach that we discuss herein can also be extended to other misbehavior

types. Since any additional misbehavior type increases the complexity of experimental

evaluation, we had to keep their number at a reasonable level. However, in view of

the fact that solutions that allow for detection of a specific misbehavior type are not

uncommon, it was our goal to demonstrate that our approach can deal with several

misbehavior types at once.

The necessary traffic samples for the three misbehavior classes and the normal class

were obtained through network simulation by applying one of the above misbehavior

models or running a misbehavior free simulation. The detailed experimental setup is

discussed in Section 7.

Classification performance in our experiments was evaluated in terms of detection

rate and false positives (FP) rate. These two measures were computed as follows:

det. ratecj =
ccj

ncj

× 100.0% FP ratecj =
FPcj

FPcj + ccj

× 100.0% (1)

where cj = {normal, dropping, delaying, wormhole}. ncj is the number of vectors

(samples) labeled with the j-th class cj ; note that ncj > 0 in all our experiments. ccj is

the number of vectors that were correctly classified as belonging to the class cj . FPcj

is the number of samples incorrectly predicted as belonging to cj . 95% confidence

intervals (CI95%) were computed for each measure. Classification performance with

respect to a vector set was evaluated by means of the classification error ǫ:

ǫ =

∑

cj
FPcj

∑

cj
ncj

× 100.0% (2)

6 Co-stimulation in Ad Hoc and Sensor Networks

Drozda et al. introduced and evaluated a co-stimulation architecture inspired by the

interplay between the innate and adaptive immune system (Drozda et al 2010). An

important task when implementing this architecture was to identify several feature

sets, each offering a different perspective on a node’s behavior. Next we present the

considered feature sets and the proposed architecture. Later we turn our attention to

our contribution, a priming approach based on this architecture. Our priming approach

takes advantage of the capability of this architecture to decrease the false positives rate.

24 features suitable for misbehavior detection from several layers of the OSI protocol

stack were considered. These features were divided into several subsets with respect to

their energy requirements and protocol assumptions. A wrapper approach (Kohavi and

John 1997) was used to identify features with a statistically significant contribution to

the detection of the three considered misbehavior types. More specifically, each of the

24 features was tested whether it significantly decreases the classification error with

respect to these misbehavior types. The feature that decreased the classification error

the most was chosen for the final feature set. The process was then repeated with the

remaining features until there was no other feature that could significantly decrease the

classification error. This was coupled with cross-validation in order to obtain a robust

estimate of the classification error in each round. The features that were identified

through this process are listed below.

These features can be computed without much computational overhead. Our mis-

behavior detection results could have been better if a more complex Fourier or wavelets
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analysis of the packet stream had been done. As the results by Barford et al. point

out (Barford et al 2002), this could lead to good anomaly detection rates.

6.1 The Features

Let ss, s1, ..., si, si+1, si+2, ..., sd be the path between ss and sd determined by a routing

protocol, where ss is the source node, sd is the destination node. The features in the

following feature set f are averaged over a time window. We use the feature labels (M3,

M4, ...) as they were introduced in (Drozda et al 2010).

MAC Layer Features:

M3 Forwarding index (watchdog) (Marti et al 2000): Ratio of data packets sent

from si to si+1 and then subsequently forwarded to si+2.

M4 Processing delay index (quantitative watchdog): Time delay that a data

packet accumulates at si+1 before being forwarded to si+2.

Routing Layer Features:

R5 Average distance to destination: Average number of hops from si to any known

destination.

R9 Connectivity index: Number of destinations with known routes as recorded in

the routing table of node si.

R12 Diameter index: Number of hops to the furthermost destination as recorded in

the routing table of node si.

Transport Layer Features:

T1 Out-of-order packet index: Number of DATA packets that were received by si

out of order. This assumes that the connection source uses a predictable scheme

for computing data packet IDs. Normalized by the time window size.

T2 Interarrival packet delay index 1: Average delay between DATA packets re-

ceived by si. The delay was computed separately for each connection and then a

master average was computed.

T3 Interarrival packet delay variance index 1: Variance of delay between DATA

packets received by si. The variance was computed separately for each connection

and then a master average was computed.

T4 Interarrival packet delay index 2: Average delay between DATA packets re-

ceived by si.

T5 Interarrival packet delay variance index 2: Variance of delay between DATA

packets received by si.

All the above features can be locally computed. The features T2, T4 and T3, T5

are identical, if only DATA packets belonging to a single connection are received by si.

M3 and M4 require operation in promiscuous mode and therefore can be considered

energy inefficient. We consider the following two subsets of the feature set f :

1. f0 = {M3, M4}

2. f1 = {R5, R9, R12, T1, T2, T3, T4, T5}

To distinguish between a feature set and its numerical instance computed in a given

time window, we introduce the following “hat” notation: f̂0 and f̂1. In our experimental

setup, we apply vector representation to f̂0 and f̂1.
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Algorithm 1 Co-stimulation based misbehavior detection at node si

Require: Sufficient data traffic in current time window at node si

Require: f̂
si+2

1 from 2-hop downstream node
1: procedure DETECT MISBEHAVIOR

2: f̂
si

1 ← compute f1 feature sample(si)

3: Send Upstream(f̂
si

1 )

4: F̂1 ← f̂
si

1 ◦ f̂
si+2

1

5: if Classification(F̂1) == misbehavior then

6: suspicious ← True
7: end if

8: if suspicious == True then ⊲ Co-stimulation: F1 → f0

9: f̂0 ← compute f0 feature sample(si)

10: if Classification(f̂0) == misbehavior then

11: mark as misbehaving(si+1) ⊲ Misbehavior confirmed
12: end if

13: end if

14: end procedure

6.2 A Co-stimulation Based Approach

With the goal to achieve a misbehavior detection performance with low false positives

rate, a co-stimulation inspired mechanism is considered in (Drozda et al 2010). This

mechanism mimics the ability of communication between various players of the innate

and adaptive immune system. More specifically, the inspiration was based upon the

observation that a cell will not be marked as infectious and thus eliminated as long as

no co-stimulation from other BIS players is received. Thus by analogy, a node should

not mark another node as misbehaving as long as it does not receive a co-stimulatory

signal from a third-party node. Such a signal should be preferably based on a distinctly

different form of misbehavior detection than that applied by the primary node.

The co-stimulation inspired approach is depicted in Fig. 1. Each node in the network

computes f̂1. This is then proliferated upstream (towards the connection source); see

Fig. 1(a). Each f̂1 travels exactly two hops; in our example from si+2 to si. If si receives

f̂1 originating at one of its neighbors, it will forward this f̂1 in the upstream direction.

If this f̂1 is not originating at one of its neighbors, it is used but not forwarded.

Since the computation of f̂1 is time window based, the frequency with which f̂1

gets sent depends on the time window size. Upon receiving f̂1 from a two-hop neigh-

bor, the node si compares it with its own f̂1 sample. This is done by evaluating the

differences between corresponding features in these two vectors (e.g. T1 computed by

si is compared with T1 computed by si+2); see Fig. 1(b). Based on this, a behavior

classification with respect to the node si+1 is done.

If si classifies si+1 as misbehaving, then it computes a sample based on the f0

feature set. This means, a co-stimulation from the f1 based classification approach is

needed in order to activate the less energy efficient f0 based classification approach; see

Fig. 1(c). If misbehavior gets confirmed, the node si+1 is marked as misbehaving. Note

that si can receive f̂1 samples from several two-hop neighbors, if multiple connections

are running over this node; see Fig. 1(d) for an example. More formally, we assume

|si • | ≥ 1 and |si+1 • | ≥ 1, where sk• is the set of all successor nodes of sk.
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Fig. 1 Immuno-inspired misbehavior detection approach.

If the MAC layer protocol takes advantage of the RTS-CTS-DATA-ACK handshake

then the proliferation of f̂1 can be implemented without adding any extra communi-

cation complexity by attaching this information to CTS or ACK packets. As long as

there are DATA packets being forwarded on this connection, the feature set can be

propagated. If there is no DATA traffic on the connection (and thus no CTS/ACK

packets exchanged), the relative necessity to detect the possibly misbehaving node

si+1 decreases. Optionally, proliferation of f̂1 can be implemented by broadcasting it

with a lower time-to-live value or by using a standalone packet type.

If the node si+1 decides not to cooperate in forwarding the feature set information,

the node si will switch, after a time-out, to the f0 feature set computation. In this

respect, not receiving f̂1 can be interpreted as a form of negative co-stimulation. If the

goal is to detect a node that misbehaves due to an intrusion, it is important that the

originator of f̂1 can be unambiguously identified, i.e. strict authentication is necessary.

This requirement for message authentication can be lifted when the goal is to detect

software or hardware failures. An additional requirement is the use of sequence numbers

for f̂1. Otherwise, the misbehaving node si+1 could interfere with the mechanism by

forwarding an outdated cached f̂1.

We introduce the following notation in order to keep track of composite feature sets

f1 applied at the nodes si and si+2: F
si

1 = fsi

1 ∪ f
si+2

1 . Similarly, F̂si

1 = f̂si

1 ◦ f̂
si+2

1 ,

where ◦ is the operator of vector concatenation. For simplicity, we omit any superscript,

whenever the node identity is clear. The co-stimulation misbehavior detection approach

is formally presented in Alg. 1. With respect to our notation, it can be also succinctly

expressed as:
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F1

co−stimulation // f0 (3)

The mechanisms of the innate immune system bear a certain resemblance to the f0

based classification phase; see Fig. 1(c). The innate system is for example very efficient

in signaling tissue injury or damage to the adaptive immune system. To a certain degree

it relies on some very rudimentary methods such as recognizing an unusually high level

of dead or damaged self cells (e.g. blood cells). This can be directly compared with the

very straightforward functionality of watchdogs. Similarly, the more learning extensive

classification approach based on F1 (Fig. 1(b)) can be compared with the adaptive

immune system.

6.3 Properties of the f0 and F1 Feature Sets

The features in these sets are averaged over a time window of size win. size. The exper-

imental results in (Drozda et al 2010) show that for the three considered misbehavior

types, the properties of F1 and f0 can be summarized with respect to the classification

error ǫ and the energy cost ξ as follows:

1. For win. size → 0, it holds:

lim
win. size→0

ǫ(F1) ≈ ǫ(f0) (4)

This characterizes the relationship between watchdog and F1 based misbehavior

detection. It points out that instead of observing each data packet’s delivery in

promiscuous mode by the node si, it can be equally well done in a cooperative way

by si and si+2, if win. size → 0.

2. For win. size ≫ 0, it holds:

ǫ(F1) > ǫ(f0) (5)

ξ(F1) < ξ(f0) (6)

The measure of energy cost ξ includes feature computation costs as well as all

induced communication costs. The communication costs for f0 are related to over-

hearing in promiscuous mode. The communication costs for F1 are related to the

necessity to transmit f̂
si+2

1 over two hops to si.

The first inequality reflects the fact that overhearing each data packet in promis-

cuous mode gives a better base for classification than a classification based on

features computed by two distinct nodes and aggregated over a time window. The

other inequality reflects the fact that operation in promiscuous mode is inherently

energy inefficient; see the comments in Section 4.

6.4 Co-stimulation and its Misbehavior Detection Efficiency

The misbehavior detection results reported in (Drozda et al 2010) show that for a

scenario applying 500-second time window, the f0 based detection rate is 97.19±0.85%

and the FP rate is 1.77±0.66%. In scenarios, where communication costs are negligible,

only the f0 based classification approach would get applied. Unfortunately, in the
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case of ad hoc networks (and similar distributed computing environments), the cost of

overhearing in promiscuous mode is very high; see the comments in Section 4.

Let Ω be the set of all vectors subject to misbehavior classification. The vectors in

Ω represent the behavior of monitored nodes (or in general, any other type of objects).

In our case, a vector vsi
m ∈ Ω has two components: vsi

m = F̂si

1 ◦ f̂si

0 , where m identifies

the time window in which F̂si

1 was computed. Dependent upon the evaluation of F̂si

1 ,

the computation of f̂si

0 is started in the time period following the time window m.

F1 and f0 based classification of vsi
m is done using the F̂si

1 component and the f̂si

0

component, respectively.

Let ΩF1
⊆ Ω be the subset of vectors that were marked as representing suspicious

behavior, after the F1 based classification was done. Let us first assume that ǫΩ(f0) =

0, where ǫΩ(f0) is the classification error of f0 based classification applied to the vector

set Ω. If f0 based classification is applied to ΩF1
, it clearly holds:

ǫΩF1 (f0) = 0 (7)

This implies, for the final FP rate and a given misbehavior class cj , after co-

stimulation is applied, it holds:

FP rateΩ
cj

(F1 → f0) = 0 (8)

In other words, the conditional application of f0 based classification removes all

misclassified vectors. Furthermore, the final detection rate for the given class is deter-

mined by the detection rate after the F1 based classification:

det. rateΩ
cj

(F1 → f0) = det. rateΩ
cj

(F1) (9)

Since to achieve ǫΩ(f0) = 0 may not be possible, Eqs. 8 and 9 translate for

ǫΩ(f0) 6= 0 to:

FP rateΩ
cj

(F1 → f0) = FP rateΩ
cj

(f0) (10)

det. rateΩ
cj

(F1 → f0) ≤ det. rateΩ
cj

(F1) (11)

This means, the final FP rate is only depending on the efficiency of f0 based

classification. Eq. 10 is based on the assumption that when classifying Ω and ΩF1

using f0 based classification, the following holds:

FP rate
ΩF1
cj

(f0) = FP rateΩ
cj

(f0) (12)

To what extent such an assumption is reasonable, is one of the goals of our experi-

mental analysis. Notice that co-stimulation introduces an implicit class of “undecided”

vectors. These are the vectors that were marked as suspicious, but this was not con-

firmed through the f0 based classification. Such undecided vectors are not reclassified

according to f0, since in our classification approach, the classification results based on

f0 and F1 must coincide.

The results reported in (Drozda et al 2010) show, for a scenario with win. size =

500s and with respect to the general misbehavior class mis (in bimodal normal-

misbehavior classification), the following:

FP rateΩ
mis(F1 → f0) = 1.67 ± 2.59% ∼= FP rateΩ

mis(f0) = 1.77 ± 0.66% (13)

det. rateΩ
mis(F1 → f0) = 78.89 ± 1.71% ∼= det. rateΩ

mis(F1) = 76.40 ± 2.53% (14)

The achieved FP rateΩ
mis(F1) was 15.09 ± 2.27%. Comparing the results for the

F1 and F1 → f0 based classification, it is clear that F1 → f0 offers a detection rate

comparable to F1, however, a much lower false positives rate.
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Algorithm 2 Initialization and Error Propagation at node si

f̄0: an ordered set of cardinality |f̄0| of f̂0 feature vectors

F̄1: an ordered set of cardinality |F̄1| of F̂1 feature vectors

f̂0[w], F̂1[w]: the feature vectors f̂0 and F̂1, respectively, computed in the time window w

Require: Sufficient data traffic at nodes si and si+2

Require: Set of priming thresholds P
1: f̄0 = F̄1 = ∅
2: repeat for each window w

3: f̂0 ← compute f0 feature sample(si)

4: f̂1L ← compute f1 feature sample(si)

5: send upstream(f̂1L)

6: f̂1R ← receive f1 feature sample(si+2)

7: if f̂1R 6= ∅ then

8: f̄0 ← f̄0 ∪ {f̂0}

9: F̂1 ← f̂1L ◦ f̂1R

10: F̄1 ← F̄1 ∪ {F̂1}
11: end if

12: until |f̄0| == target size

13: for all windows w in f̄0 do

14: if f̂0[w] violates P then

15: label vector as misbehavior(F̂1[w])
16: else

17: label vector as normal(F̂1[w])
18: end if

19: end for

20: train classifier using labeled set(F̄1)

Algorithm 3 Co-stimulation based misbehavior detection at node si

Require: Sufficient data traffic in current time window at node si

Require: f̂
si+2

1 from 2-hop downstream node
Require: Set of (optimized) priming thresholds P
1: procedure Detect Misbehavior

2: f̂
si

1 ← compute f1 feature sample(si)

3: Send Upstream(f̂
si

1 )

4: F̂1 ← f̂
si

1 ◦ f̂
si+2

1

5: if Classification(F̂1) == misbehavior then

6: suspicious ← True
7: end if

8: if suspicious == True then ⊲ Co-stimulation: F1 → f0

9: f̂0 ← compute f0 feature sample(si)

10: if f̂0 violates P then

11: mark as misbehaving(si+1) ⊲ Misbehavior detected
12: end if

13: end if

14: end procedure

6.5 Error Propagation Algorithm for Ad Hoc Networks

Co-stimulation, as presented in the previous sections, requires that two distinct F1

and f0 based classifiers get computed. This implies that two sets of F̂1 and f̂0 feature

vectors, labeled with the classes under consideration, must be available for training.

Next, we discuss how this can be avoided.
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(b) An approach extended with optimization.

Fig. 2 Error propagation algorithm.

In this section, we delve into the mechanisms of error propagation. Error propaga-

tion is the opposite of co-stimulation, i.e. in a short form it can be expressed as:

F1 f0

error propagationoo (15)

Eq. 4 states that for win. size → 0, the F1 and f0 based classification approaches

offer the same classification accuracy. This implies, if ǫΩ(f0) = 0, for the F̂1 and f̂0

feature vectors stemming from the same time window, the classification outcome will

be (nearly) the same. This motivates the following strategy: compute F̂1 and f̂0 feature

vectors, classify the f̂0 feature vector according to a predefined threshold, and then,

label the F̂1 feature vector with the same label as the f̂0 based vector. This allows us

to build a labeled F̂1 based feature vector set necessary for the computation of an F1

based classifier.

The application of such thresholds is hereafter referred to as priming. The general

goal of priming is to introduce a well-defined level of consistency, when detecting mis-

behavior in an ad hoc network. With respect to the above said, we define misbehavior

as a violation of the priming thresholds P = {p1, p2, ..., pl}, where l is the number

of priming thresholds. A priming threshold can be for example the maximum allowed

data packet loss at a node or the maximum allowed data packet processing delay at a

node. If any priming threshold is violated, the corresponding F̂1 and f̂0 feature vectors

will be labeled as representing misbehavior.

In order to achieve a good level of energy efficiency, it is desirable to apply win. size ≫

0. Since however a larger time window size introduces a loss in misbehavior detection

precision, error propagation must be followed by co-stimulation:
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ǫ
F1

co−stimulation //
f0

error propagation
oo
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(16)

Co-stimulation is achieved by computing a fresh f̂0 feature vector and comparing

it with P. The initialization phase of this approach is formally presented in Alg. 2. The

detection phase is presented in Alg. 3. This approach is also schematically depicted in

Fig. 2(a).

Error propagation and co-stimulation is executed within the same node; see Fig. 3.

Notice that some nodes in the example network, for the shown data flows, are unable

to compute F̂1 since they do not have any two-hop neighbor si+2. On the other hand,

several nodes receive multiple f̂
si+2

1 , e.g. s1 from s3 and s5.

Let us now formulate the effects of these two phases in more detail. Let us assume

that win. size ≫ 0. For simplicity, let us also assume that ǫΩ(f0) = 0.

1. After the error propagation phase: it holds that ǫΩ(F1) > 0, i.e. the precision of

F1 based classification is for win. size ≫ 0 lower than the precision of f0 based

classification. This is a direct consequence of the property expressed in Eq. 5.

ǫΩ(F1) > 0 implies that there exists a class cj for which at least one of the following

holds:

det. rateΩ
cj

(F1) = a < 100%

FP rateΩ
cj

(F1) = b > 0%

2. After the co-stimulation phase: co-stimulation applied after error propagation de-

creases the FP rate of the class cj to zero, while keeping the detection rate un-

changed:

det. rateΩ
cj

(F1 → f0) = a

FP rateΩ
cj

(F1 → f0) = 0%

This is a direct consequence of the properties expressed in Eqs. 8 and 9.

Since to achieve ǫΩ(f0) = 0 may not be feasible, Eqs. 10 and 11 apply. This means

that the final FP rate for a class cj is determined by FP rate
ΩF1
cj

(f0). Similarly, the

final detection rate has an upper bound equal to det. rateΩ
cj

(F1). Notice that win. size

also determines the time delay for detecting a misbehavior, i.e. it should reflect the

requirements prescribed for the given misbehavior detection system.

6.6 Error Propagation Algorithm with Optimization

The error propagation algorithm can be extended with an optimization phase; see

Fig. 2(b). With respect to the classification outcome, the individual priming threshold

values for each node can be optimized, i.e. the classification error can be minimized.

This can be done by a repeated application of the error propagation and co-stimulation

phases, while adjusting the priming thresholds for each node, until a termination con-

dition is met; see Fig. 2. This approach can be described as priming with influences of

e.g. noise being considered locally. More formally, new optimized priming thresholds



Priming: Making the Reaction to Intrusion or Fault Predictable 17

Fig. 3 A 10-node ad hoc network with priming. s1 is the only data flow source node. s3, s7

and s10 are sink nodes for three distinct data flows.

P∗ = {p∗1, p∗2, ..., p∗l } for each node si will be found, so that the final classification error

for each node si is minimized. The repeated application of the error propagation and

co-stimulation phases is inspired by the feedback loop between the innate and adaptive

immune systems as discussed in Section 2.

Our extended approach bears a certain similarity to the backpropagation algorithm

for artificial neural networks (Alpaydin 2004). The backpropagation algorithm takes

advantage of two steps, feed-forward and error backpropagation. These two steps are

repeated in order to minimize an error function. A notable difference between our

extended approach and the backpropagation algorithm isthat the co-stimulation phase

is designed to revert the FP rate to the levels before any error propagation was done.

Since the FP rate is expected to stay unchanged, the search for suitable values for

priming thresholds is less complex.

7 Experimental Setup

Even though, we were able to derive the basic rules governing the efficiency of co-

stimulation and priming (see Eqs. 10 and 11), an experimental analysis is necessary in

order to offer a quantitative insight into their efficiency. Therefore, we designed several
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experiments based on network simulation using the JiST/SWANS network simula-

tor (Barr et al 2005).

JiST/SWANS was chosen over other alternative such as ns2 due to its better scal-

ability with the experiment size, both in terms of event processing speed and memory

overhead (Barr et al 2005). JiST/SWANS is about two orders of magnitude faster

than ns2 with Tcl. The other considered alternative was Glomosim (Bajaj et al 1999).

We opted not to use Glomosim since its development stopped in 2001, when its com-

mercial version Qualnet (Scalable Networks 2010) was introduced. The JiST/SWANS

deficiency, that we faced, was its simplified physical layer implementation, most notably

JiST/SWANS does not implement any modulation schemes.

JiST/SWANS does not offer any ready-to-use misbehavior implementation. There-

fore we had to implement the three considered misbehavior types. Additionally, it was

necessary to increase the number of packet events that get logged. This resulted in

large packet event logs, therefore it was also necessary to implement an on-the-fly data

compression. For this purpose we used the BZIP2 library (Seward 2010).

Performance evaluation was based upon a standard machine learning experiment,

where the classification efficiency is estimated using stratified k-fold cross-validation (Al-

paydin 2004), in our case with k = 20. The classification based on F1 was done using a

decision tree classifier; see Alg. 2, line 20. To decide whether a node within the decision

tree should be further split (impurity measure), we used the information gain measure.

As the decision tree classifier is a well-known algorithm, we omit its discussion. We re-

fer the interested reader to (Alpaydin 2004). We used the decision tree implementation

from the Rapidminer tool (Mierswa et al 2006).

Experiments: The misbehavior detection performance of our approach depends on

ǫΩ(f0), the classification error of f0 based classification. This is due to the fact that

f0 based classification provides a basis for the final decision about whether a node

misbehaves. It is also used in the initial phase to correctly label the F1 based feature

vectors. Due to its importance, we decided to use ǫΩ(f0) as one of the input param-

eters in our performance evaluation. We consider three levels of ǫΩ(f0): level1, level2
and zero. Our goal is to have ǫΩ(f0) for level2 equal or greater than ǫΩ(f0) for level1.

Unfortunately, it is only possible to set ǫΩ(f0) indirectly. This can be done by identi-

fying three scenarios with three different levels of misbehavior severity, each scenario

yielding a substantially different ǫΩ(f0).

We executed three distinct experiments with the following values for α, β and δ;

see Section 5:

– Experiment 1: ǫΩ(f0) = level1 with α1 = 30%, β1 = 30% and δ1 = 100ms.

– Experiment 2: ǫΩ(f0) = level2 with α2 = 10%, β2 = 30% and δ2 = 20ms.

– Experiment 3: ǫΩ(f0) = 0. The same parameters as in Experiment 2 were applied,

however, ǫΩ(f0) was set to 0. This was done by labeling all vectors according to

the priming thresholds P, i.e. if a threshold was violated, the vector was labeled as

representing an undesired operational state and vice-versa.

To put the applied parameters α, β, δ into perspective, the data packet dropping

rate under “normal” traffic was 0.01 ± 0.18%. The data packet delaying rate under

“normal” traffic was 1.90 ± 0.48 ms.

The rationale for the first experiment was to consider conditions with a lower clas-

sification complexity, so that an upper bound on the energy efficiency of our approach

can be established. The second experiment was designed to gain some insight into how



Priming: Making the Reaction to Intrusion or Fault Predictable 19

Experiment 1
Win. size [s] Total Normal Dropping&Delaying

50 6847.85±142.90 4603.75±88.94 2200.50±66.20
100 3477.15±72.37 2340.15±44.95 1115.25±33.68
250 1465.80±30.87 985.15±19.21 471.25±14.20
500 785.40±15.87 530.00±9.91 250.45±7.50

Experiment 2
Win. size [s] Total Normal Dropping&Delaying

50 6238.30±118.96 4385.30±85.14 1812.20±46.62
100 3012.90±57.77 2124.80±41.57 868.20±22.67
250 1078.75±20.65 767.20±15.07 304.70±7.96
500 444.75±8.73 323.85±6.66 118.20±3.19

Experiment 3
Win. size [s] Total Normal Misbehavior

50 6238.30±118.96 4498.10±90.11 1740.20±44.31
100 3012.90±57.77 2153.20±43.62 859.70±22.38
250 1078.75±20.65 778.60±15.64 300.15±7.96
500 444.75±8.73 328.50±6.89 116.25±3.27

Table 1 Sample set size for Experiment 1-3.

our approach performs under less severe misbehavior levels, i.e. when the difference

between normal behavior and misbehavior is less pronounced. The aim of the last ex-

periment was to offer an estimate on detection performance when the goal is to detect

a violation of the priming thresholds P without assuming that such a violation must

be the result of a misbehavior. It also offers a quantitative insight into Eqs. 8 and 9.

M3D and M4D Priming Thresholds: In each of the three experiments, we used two

priming thresholds P = {M3D, M4D}. In Experiment 1 we set M3D to 97.5% and M4D

to 4ms. In Experiment 2 and Experiment 3 we set M3D to 99.5% and M4D to 2.6ms.

These values were found through the extended approach shown in Fig. 2(b) using the

“trial and error” method (as a substitute for a formal optimization approach). Notice

that we apply identical priming thresholds to all nodes. Allowing for node specific

priming thresholds could lead to an improved detection performance of our priming

approach.

Misbehavior: There were 236 nodes randomly chosen to execute data dropping or

delaying misbehavior. Our intention was to model random failure occurrences, assuming

a uniform failure distribution in the network. As it is hard to predict the routing of

data packets, many of these nodes could not execute any misbehavior as there were

no data packets to be forwarded by them. In our case, about 20-30 misbehaving nodes

were concurrently active.

There were 20 wormholes simulated; each wormhole was designed to bypass 15

hops, i.e. the source and sink were 15 hops away (with respect to the unmodified

topology before any wormhole was added). We considered this number of wormholes

largely due to the necessity to obtain enough data for a later statistical analysis of the

experimental results.

Simulation Setup: We did 20 independent simulation runs for each misbehavior type

and 20 misbehavior free (normal) simulation runs. The simulation time for each run was

4 hours. We used a non-overlapping time window approach for features’ computation.

We used four different time window sizes: 50, 100, 250 and 500 seconds. In the case

of a 500-second time window, there were 28 non-overlapping windows in each run (4
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hours/500 seconds = 28.8). This gave us 4 × 20 × 28 = 2,240 vectors (samples) for each

node. This also determined the max. target sample set size for the error propagation

algorithm.

Alg. 2 and 3 require “sufficient” data traffic in a given time window. This is a

technical requirement aimed at avoiding time windows with no or very little data

traffic. We only considered time windows with the data traffic equal or larger than
η
α × win. size

50
, where η is the minimum expected number of data packets to be dropped

in a 50-second time window. We considered η = 2.0, i.e. the minimum number of

data packets in a 50-second time window was 6.66 and 20 for α = 0.3 and α = 0.1,

respectively. To simplify the experiments we only considered 20 nodes with the highest

amount of data traffic. The resulting sample set size per node is reported in Table 1.

The complexity of our experimental setup can thus be summarized as follows: 3 dis-

tinct experiments, 20 independent simulation runs, 3 misbehavior types and 1 normal

traffic behavior, and 4 time window sizes. Additionally, when estimating the classifi-

cation efficiency of our approach, k-fold cross-validation with k = 20 was done. Due

to the experimental setup complexity, we only considered a single network topology,

a single model for data packet injection and a fixed number of data connections. The

used hardware was 20× Linux (SuSE 11.2) PC with 2GB RAM and a Pentium 4 3GHz

microprocessor.

Topology, Connections, Data Traffic and Protocols: We used a topology based

on a snapshot from the movement prescribed by the Random waypoint movement

model (Johnson and Maltz 1996). There were 1,718 nodes simulated; the physical area

size was 3,000m × 3,000m. A topology of this size was necessary since we needed

to accommodate 20 wormholes. We used this specific topology because it had been

quite extensively studied by Barrett et al. in (Barrett et al 2005); the results reported

therein include many graph-theoretical measures that were helpful in finding suitable

parameters for our experiments.

We modeled data traffic as Constant bit rate (CBR), i.e. there was a constant delay

when injecting data packets. This constant delay in our experiments was 2 seconds

(injection rate of 0.5 packet/s); the packet size was 68 bytes. CBR data packet sources

correspond to e.g. sensors that transmit their measurements in predefined constant

intervals. CBR can be considered due to its synchronized nature an extreme model for

data packet injection. In fact, the results published in (Schaust and Drozda 2008) show

that when using a stochastic injection model, such as the Poisson traffic model, one

can expect a better performance of the misbehavior detection system.

In our simulations we used 50 concurrent data connections. The connection length

was 7 hops. In order to represent a dynamically changing system, we allowed connec-

tions to expire. An expired connection was replaced by another connection starting at

a new random source node. Each connection was scheduled to exist 15 to 20 minutes.

The exact connection duration was computed as

τ + rUλ (17)

where τ the minimum duration time of a connection, rU a random number from

the uniform distribution [0, 1] and λ the desired variance of the connection duration.

In our experiments, we used τ = 15 min and λ = 5 min.

We used the AODV routing protocol. We used this protocol with JiST/SWANS

default settings. Most notably, the net diameter was set to 19 hops and the routes in

any routing cache were not allowed to expire. Since in our approach to misbehavior
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Normal Dropping&Delaying Any Misbehavior
Win. size [s] Det. rate CI95% Det. rate CI95% Det. rate CI95%

f0

50 97.23 0.67 99.10 0.25 99.10 0.25
100 97.37 0.66 99.62 0.18 99.62 0.18
250 97.34 0.69 99.83 0.14 99.83 0.14
500 97.38 0.70 99.91 0.11 99.91 0.11

F1

50 94.68 0.98 95.56 0.88 95.44 0.91
100 93.70 1.02 94.37 0.81 94.40 0.81
250 91.06 1.12 89.65 1.33 89.84 1.38
500 88.47 1.35 85.39 2.25 85.64 2.30

F1 → f0

50 94.38 1.01 94.72 0.97 94.57 1.02
100 93.57 1.06 93.55 0.97 93.52 0.98
250 89.08 1.31 88.29 1.71 88.29 1.76
500 88.43 1.36 83.42 2.55 83.60 2.50

Table 2 Experiment 1: Detection rate.

Normal Dropping&Delaying Any Misbehavior
Win. size [s] FP rate CI95% FP rate CI95% FP rate CI95%

f0

50 0.41 0.13 4.15 1.29 5.96 1.32
100 0.17 0.10 3.88 1.27 5.69 1.30
250 0.08 0.06 3.87 1.34 5.74 1.35
500 0.05 0.06 3.85 1.43 5.73 1.36

F1

50 2.04 0.48 9.97 1.69 11.55 1.83
100 2.43 0.40 11.92 1.85 13.85 1.95
250 4.41 0.78 18.44 1.88 19.74 2.19
500 5.85 0.89 24.95 2.91 26.04 2.70

F1 → f0

50 0.10 0.07 3.37 1.16 5.16 1.24
100 0.04 0.04 3.10 1.07 4.92 1.18
250 0.03 0.03 2.64 0.86 4.35 1.08
500 0.01 0.02 2.15 0.89 4.00 1.08

Table 3 Experiment 1: FP rate.

detection, we only look at a two-hop segment of a connection, a variety of other routing

protocols could have been used instead. For example, the DSR protocol (Johnson and

Maltz 1996) could have been equally well used.

We used the IEEE 802.11 MAC protocol. The RTS-CTS-DATA-ACK handshake

was enabled for all data communication. This minimized the influence of the hidden

terminal phenomenon on the overall performance and thus simplified the evaluation

of experimental results. We used UDP transport protocol and IPv4. The channel fre-

quency was set to 2.4 GHz. The transmission rate was set to 54 Mbit/s. We used the

two-ray signal propagation model (Rappaport 2001). Antenna and signal propagation

properties were set so that the resulting radio radius equals 100 meters.
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Normal Dropping&Delaying Any Misbehavior
Win. size [s] Det. rate CI95% Det. rate CI95% Det. rate CI95%

f0

50 95.88 0.73 89.59 1.62 95.60 1.00
100 97.49 0.70 96.79 1.00 96.79 1.00
250 97.95 0.62 98.40 0.90 98.40 0.90
500 98.15 0.54 98.74 1.00 98.74 1.00

F1

50 92.97 1.30 88.50 1.33 88.77 1.25
100 92.85 1.35 86.79 1.66 86.56 1.64
250 90.22 1.46 81.38 1.78 82.00 1.69
500 88.35 0.99 73.40 2.52 73.49 2.34

F1 → f0

50 91.84 1.51 88.12 1.47 88.77 1.25
100 91.99 1.59 85.69 1.69 85.35 1.71
250 89.80 1.64 80.49 1.88 80.94 1.79
500 87.95 1.16 72.21 2.66 71.64 2.57

Table 4 Experiment 2: Detection rate.

Normal Dropping&Delaying Any Misbehavior
Win. size [s] FP rate CI95% FP rate CI95% FP rate CI95%

f0

50 1.76 0.48 14.46 3.36 10.01 1.64
100 1.34 0.49 4.12 1.40 6.13 1.59
250 0.67 0.45 3.13 1.16 5.17 1.41
500 0.50 0.47 3.10 1.34 5.18 1.52

F1

50 4.36 0.51 15.27 3.06 17.23 2.96
100 5.23 0.60 16.19 2.98 17.69 3.08
250 6.56 0.69 23.72 3.51 25.38 3.62
500 8.83 0.80 32.12 4.17 33.20 3.70

F1 → f0

50 0.59 0.18 15.09 3.72 6.42 1.40
100 0.44 0.18 3.10 1.13 5.01 1.35
250 0.23 0.16 2.34 0.84 4.26 1.24
500 0.09 0.10 2.09 0.99 3.57 1.25

Table 5 Experiment 2: FP rate.

8 Performance Evaluation

8.1 Misbehavior Detection Performance

The results achieved by applying the error propagation algorithm in Experiment 1

and Experiment 2 are reported in Tables 2-5. The results for the three misbehavior

classes are reported separately for the packet dropping and delaying classes (primed

misbehavior classes) as well as for all three misbehavior classes together. For the sake

of thoroughness, we also report the results after co-stimulation (F1 → f0) for the

normal class. Notice that our approach enters the co-stimulation phase, only if F1

based classification detects a possible misbehavior; see Alg. 3, line 8.

Excluding the results for Experiment 2 with 50-second time window, it can be

seen that as the time window size decreases, the performance of f0 and F1 based
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classification becomes more and more comparable. This is expected and in-line with

Eq. 4. It can also be seen that the final detection rate after co-stimulation is in-line

with Eq. 11. The final FP rate is in-line with Eq. 10 or lower. This is an important

observation pointing out that in our case the task of classifying ΩF1
was no more

complex than the task of classifying Ω, i.e. Eq. 12 can be reformulated with respect to

our results as follows:

FP rate
ΩF1
cj

(f0) ≤ FP rateΩ
cj

(f0) (18)

The f0 based classification error ǫΩ(f0) is reported in Table 6. It is in the range

of 1.85 − 2.19% and 1.73 − 4.17% for Experiment 1 and Experiment 2, respectively.

It is equal to the fraction of vectors that were incorrectly labeled after the priming

thresholds P were applied in the initial phase of our algorithm (Alg. 2, lines 15 and

17). This did not only decrease the precision of labeling in the initial phase, but it

also decreased the efficiency of co-stimulation (Alg. 3, line 10). This fact especially

negatively impacted the results for Experiment 2 with 50-second time window. This

problem could be less pronounced, if priming thresholds optimized locally with respect

to each node were used.

The final FP rate for ”normal” behavior could be significantly decreased in compar-

ison to FP rate(F1). It is in the range of 0.02−0.07% and 0.10−0.18% for Experiment

1 and Experiment 2, respectively. The FP rate for the two primed misbehavior classes

is in the range 2.15 − 3.37% and 2.09 − 15.09% for Experiment 1 and Experiment 2,

respectively. The high FP rate value for Experiment 2 and 50-second time windows is

connected with ǫΩ(f0) being notable higher than in the other cases. The performance

gap, in terms of FP rate, between the ”normal” class and the two primed classes orig-

inates from the fact that learning ”normal” is simpler than learning ”misbehavior”. In

the latter case, samples which belong to ”normal” are often misinterpreted as repre-

senting misbehavior.

The performance difference between the two primed classes and the ”any misbe-

havior” class is the result of two phenomena: i) there was no priming applied with

respect to the wormhole misbehavior, and ii) the number of vectors representing the

wormhole misbehavior is smaller compared to data dropping and delaying. The latter

argument is connected with the fact that the number of wormholes in a network must

not exceed a certain limit, otherwise the induced topological changes become extreme.

The results for Experiment 3 are reported in Table 7. It can be seen that they are

in-line with Eqs. 8 and 9. Most notably, it can be seen that the final FP rate is as

expected 0%.

In Section 6.4 we pointed out that co-stimulation introduces an implicit class of

“undecided” vectors. These are the vectors that were marked as suspicious after F1

based classification, however, this prediction could not be confirmed by the subsequent

f0 based classification. There are two cases possible: i) a false positive was not confirmed

by the f0 based classification and ii) a true positive was not confirmed by the f0 based

classification. The first case represents a desirable phenomenon since it decreases the

false alarm rate. The other case decreases the final detection rate. The number of

vectors that become “undecided” in the latter case can be estimated as follows:

κ = (det. ratecj (F1) − det. ratecj (F1 → f0)) × sample sizecj

where sample sizecj is the sample set size for a given class cj as reported in Table 1.

For example, for Experiment 1, win. size = 100s and the combined dropping and
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Win. size [s] Experiment 1 Experiment 2
50 2.19±0.11 4.17±0.17
100 1.93±0.11 2.72±0.16
250 1.89±0.11 1.94±0.15
500 1.85±0.11 1.73±0.14

Table 6 ǫΩ(f0) for Experiment 1 and 2.

Normal Any Misbehavior
Win. size [s] Det. rate CI95% Det. rate CI95%

F1 or F1 → f0

50 94.50 1.04 86.39 1.20
100 94.03 1.14 86.79 1.53
250 91.19 1.26 81.25 2.06
500 89.36 1.06 72.47 2.88

FP rate CI95% FP rate CI95%
F1

50 5.17 0.50 14.36 2.54
100 5.08 0.59 15.22 2.60
250 6.62 0.71 23.92 3.38
500 8.99 0.79 31.35 3.32

F1 → f0

50-500 0.00 ± 0.00%

Table 7 Experiment 3: Detection rate and FP rate.

delaying class, κ = (94.37 − 93.55) × 2340.15 = 19.19 vectors or 0.55% of the sample

set size for this class. For the same time window size and class, the corresponding rate

in Experiment 2 equals 0.78%. Notice that in Experiment 3, since det. ratecj (F1) =

det. ratecj (F1 → f0), κ equals 0. This is expected and in-line with Eq. 9. Notice

also that κ reflects the cost of co-stimulation, i.e. the cost of removing false positives

through co-stimulation.

8.2 Energy Consumption Analysis

When detecting a misbehavior, the more costly f0 based detection will only get used,

if (i) a true positive was detected by F1 or (ii) a false positive was mistakenly detected

by F1. This means, for a misbehavior free ad hoc network, the energy saving over

an exclusive f0 approach is related to FP ratemis(F1), the rate at which f0 based

misbehavior detection is mistakenly applied. We focus on the energy efficiency analysis

in a misbehavior free ad hoc network, since it is reasonable to assume that an ad hoc

network will work reliably, most of the time. The energy consumption can be thus

modeled as:

Let us first derive the models for the energy consumption with respect to f0 and

F1 based misbehavior detection. The energy cost ξt(n) related to receiving n bytes can

be expressed as:

ξr(n) = n × data rate−1 × Vcc × Ir (19)
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where data rate is the data rate in bytes/s, Vcc is the supply voltage of the wireless

device in V and Ir is the current drawn while receiving in A. Similarly, the energy cost

ξt(n) related to transmitting n bytes can be expressed as follows:

ξt(n) = n × data rate−1 × Vcc × It (20)

where It is the current drawn while the device is in receive mode.

The f0 based detection relies on data packet overhearing. The energy cost ξf0
(t)

when f0 based detection is applied for t0 seconds can be expressed as:

ξf0
(t0) = ξr(t0 × inj rate × size(data)) (21)

where size(data) is the data packet size in bytes and inj rate is the injection rate in

s−1. Eq. 21 reflects the fact that the energy consumption in promiscuous mode grows

linearly with the number and size of the overheard data packets. We remind the reader

that we considered inj rate = 0.5s−1 in our experiments. The energy cost of F1 based

detection applied for t seconds can be expressed as:

ξF1
(t) = ⌊

t

win. size
⌋ × 2 ×

(

ξt(size(f̂1)) + ξr(size(f̂1))
)

(22)

We assume that 24 2-byte features are being transported in f̂1. We thus assume

size(f̂1) = 48+ size(header) bytes, where size(header) is the data packet header size.

Eq. 22 reflects the cost of sending f̂1 from the node si+2 over two hops to the node si.

As we stated above, the f0 based misbehavior detection in a misbehavior free

network is applied with the probability FP ratemis(F1). The total energy cost of our

approach being applied for t seconds can be expressed for t ≥ win. size as:

ξ(t) = ξF1
(t) + FP ratemis(F1) × ξ′f0

(t) (23)

where

ξ′f0
(t) = ⌊

t − win. size

win. size
⌋ × ξf0

(t0) + ξf0
(min{t mod win. size, t0}) (24)

t0 is the duration of f0 based classification. In our experiments, we set t0 = 50s.

Under our data traffic model, if si forwards data packets for a single connection, 25

data packets get overheard in promiscuous mode. There is no energy consumed for

t < win. size, therefore we omit this case. The energy cost model formulated in Eq. 23

assumes that feature computation and decision tree query costs are negligible, com-

pared to communication costs. This is a reasonable simplifying assumption, since the

maximum depth of the decision tree is five. Zhao et al. (Zhao et al 2003) reported that

for Sensoria sensors and Berkeley motes the ratio between the energy consumption

related to communication and computation is in the range of 103 − 104.

In order to present a quantitative energy cost analysis, it is necessary to consider

a specific wireless device. We chose an IEEE 802.15.4 compliant device and two IEEE

802.11 WLAN devices. To make the results for these devices comparable, we apply an

estimate of MAC Layer overhead and adjust the expected data rate for each device

accordingly. Our choice are the following three devices, each requiring a 3.3V DC power

supply:
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Fig. 4 TI CC2420 energy consumption for win. size = {50s, 250s, 500s}.

– TI C2420 (Texas Instruments 2007) is a widespread IEEE 802.15.4 compliant

transceiver. TI CC2420 supports data packet sizes up to 127 bytes. We assume

the use of short addresses and PAN ID compression1, i.e. 11 bytes are needed for

the MAC header (IEEE Std. 802.15.4 2003). This translates to an effective data

rate of 228kbit/s, i.e. in our computations we set data rate = 228kbit/s. TI C2420

consumes 18.8mA when in receive mode and 17.4mA when in transmit mode.

– Wistron CM9 miniPCI card (Wistron NeWeb Corp. 2010) is an example for a

consumer grade WiFi device. Wistron CM9 is based on the Atheros AR5213 chipset.

It is compliant with IEEE 802.11a/b/g. When operating in 54Mbit 802.11g mode,

it consumes 410mA when transmitting and 310mA when receiving data. For a

54Mbit connection we assume an effective data rate of 22Mbit/s (Ahlers 2009).

– Ubiquiti XR2 card (Ubiquiti Networks 2010) is an Atheros AR5414 based long-range

WiFi device. Ubiquiti XR2 consumes 900mA when transmitting and 300mA when

receiving in 802.11g 54Mbit mode. Similarly as for the previous wireless device, we

assume an effective data rate of 22Mbit/s.

Considering these three wireless devices, we investigated our priming approach

using FP ratemis(F1) for ”any misbehavior” from Experiment 1 and 2; see Tables 3

and 5. We assumed that f̂
si+2

1 is transmitted as a standalone data packet. Should some

other approach be used, e.g. piggybacking on CTS/ACK packets, the associated energy

cost could be lower.

Fig. 4 shows the energy cost of TI CC2420 when transmitting 127-byte data packets

assuming the conditions of Experiment 1. For 500-second time window, the energy cost

reduction is 96.8%, if compared to an exclusive use of f0 based misbehavior detection.

More specifically, f0 based detection consumes 69.11mJ , whereas our priming approach

consumes 2.20mJ . For the smaller 50-second time window, the energy cost reduction

1 PAN ID = Personal Area Network ID.
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Fig. 5 Wistron CM9 and Ubiquiti XR2 energy consumption.

is 82.6%, with 1.20mJ per time window consumed by our approach and 6.91mJ by an

exclusive f0 based detection.

Under the conditions of Experiment 2, due to the higher FP ratemis(F1), the

energy cost increases to 2.70mJ for 500-second time window and to 1.60mJ for 50-

second time window, yielding an improvement of 96.1% and 76.9%, respectively, in

comparison to an exclusive use of f0 based misbehavior detection.

In Fig. 5 we report the results for the two WLAN wireless cards: Wistron CM9

and Ubiquiti XR2. We applied the FP rates obtained in Experiment 1. The time

windows size was set to 500 seconds and the data packet size was set to 1024 bytes.

The energy consumption reduction for Ubiquiti XR2 is 97.2%. f0 based detection

consumes 92.16mJ per time window, whereas our priming approach consumes 2.54mJ

per time window. The energy consumption reduction for Wistron CM9 is 97.31%. f0

based detection consumes 95.23mJ per time window, whereas our priming approach

consumes 2.56mJ per time window. The difference in energy consumption for these

two WLAN wireless cards is rather small. This is due to the fact that the energy

consumption while receiving is almost identical. Additionally, the energy consumption

while sending has only a limited impact, since the cost of F1 based classification is

much lower than the cost of f0 based classification.

Notice that the cost of sending a single f̂1 packet over two hops is small, if compared

to overhearing data packets in promiscuous mode for the same time period; see Fig. 4

and compare the results for f0 and F1. Therefore, in the initial phase of the error

propagation algorithm, the necessity to compute F̂1 increases the energy consumption

only slightly.
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9 Summary of Results and Research Challenges

Since co-stimulation and priming are approaches that until now received relatively

little attention, we discuss the challenges connected with their application. We also

summarize our key results.

1. Independence of detection rate and FP rate: The co-stimulation enables that the

final detection rate and false positives rate are influenced by two distinct mech-

anisms: F1 and f0 based classification. This fact is documented in Eqs. 10 and

11. This property allows for tuning the detection system with respect to these two

measures in isolation. We showed that in scenarios, where the only goal is to de-

tect whether a specific performance threshold was violated, it is feasible to achieve

ǫΩ(f0) = 0. For this reason, with respect to Eq. 8, it was possible to decrease the

final false positives rate to zero; see Experiment 3 and the related results in Table 7.

2. Energy efficiency: The costly f0 (watchdog) based classification is only applied if

the more energy efficient F1 classification detects a misbehavior. In a misbehavior

free ad hoc network, the frequency of f0 based classification is decreased propor-

tionally to 1 − FP ratemis(F1). Under our experimental setup, the peak energy

consumption reduction was 92.7% compared to the energy cost of exclusive f0

based classification. Co-stimulation allows us to choose a trade-off between detec-

tion performance and energy efficiency. A higher level of energy efficiency can be

achieved by increasing the time window size. This results in a lower detection rate.

Increasing energy efficiency has however only a limited influence on the FP rate.

3. Source of co-stimulation: The co-stimulation approach due to Sarafijanović and

Le Boudec (Sarafijanovic and Le Boudec 2004) benefits from the information about

data packet delivery provided by TCP (Transmission Control Protocol). If a data

packet is not delivered, then the connection source does not receive the correspond-

ing packet acknowledgment. This can then be used as a co-stimulation for another

form of data packet loss detection. The transport layer can thus serve as a potent

source of co-stimulation for any lower layer detection mechanisms. This is however

not always possible, since e.g. sensor networks are expected to operate with a re-

duced set of transport layer services. The reason for such a reduction is also the

energy consumption related to transport layer services. The goal to increase energy

efficiency of misbehavior detection was our motivation for investigating a distinctly

different form of co-stimulation as discussed in Section 6.2.

4. Co-stimulation avoiding watchdog (f0) features: Watchdog features can only be

computed, if omnidirectional antennas are being used. Using a directional antenna

by si+1 could preclude any packet overhearing by si. A similar effect can be ob-

served, if si+1 is capable of dynamic radio radius adjustment. As Eq. 4 suggests,

watchdog features can be substituted by F1 based features, if win. size → 0. This

implies, a co-stimulation based on F1 with a small window size could be a viable

substitute for an f0 based co-stimulation. For example, an F1 based classification

with a 25-second time window could be used instead:

F1(500s)
co−stimulation // F1(25s) (25)

This sort of co-stimulation would require an adaptive approach for requesting an

f̂
si+2

1 sample based on a smaller time window size. It also limits the option of

negative co-stimulation; see Section 6.2. Negative co-stimulation is executed, if

si+1 does not cooperate in forwarding f̂
si+2

1 feature vectors. This means, either f0
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based classification is reserved for negative co-stimulation or another mechanism is

needed.

We next discuss a few challenges related to co-stimulation or priming:

1. Convergence of the extended procedure with optimization: In Section 6.6 we intro-

duced priming extended with an optimization phase. This optimization phase allows

for finding the optimal thresholds for P∗. It is currently unclear, which optimiza-

tion approach would suit best this purpose, i.e. delivering the best performance

with respect to the optimization convergence.

2. Minimizing the rate of undecided vectors: Undecided vectors are the vectors that

were after F1 based classification marked as representing a misbehavior, but this

could not be confirmed by f0 based classification. An especially severe case happens,

if F1 based classification correctly classifies a vector as representing a misbehavior,

but this classification result will get incorrectly rejected by f0 based classification.

One of the possibilities how the decrease the rate of undecided vectors is to present

f0 based classification with vectors that this classification approach can correctly

classify with a high success rate. This implies that ǫΩF1 (f0) ≪ ǫΩ(f0), i.e. the task

to classify the vectors in ΩF1
is much less complex than the task to classify the

vectors in Ω. The challenge is to tune F1 based classification in such a way that it

outputs a vector set ΩF1
such that ǫΩF1 (f0) → 0.

10 Conclusions

We proposed and evaluated a priming approach for misbehavior detection in ad hoc

networks. The inspiration for our priming approach came from the BIS priming mecha-

nisms that enable the activation of immune cells. Such activated immune cells are then

capable of detecting a specific type of pathogen as well as triggering a specific type

of immune reaction. Our general goal could be thus described as providing priming

capabilities within an ad hoc network, so that a node can recognize whether a set of

operational conditions is not violated. Such operational conditions may require that

a certain minimum or maximum level of data packet delivery or data packet delay is

achieved. Our priming approach takes advantage of co-stimulation. A key characteris-

tic of co-stimulation is its ability to suppress FP rates as well as to stimulate energy

efficiency. We showed that applying our priming approach, an improvement in energy

efficiency of about 1.5 order of magnitude is possible in certain scenarios, if compared

to a direct node monitoring using watchdog features.

Our additional goal was to show that our priming approach can provide a high

degree of independence between the resulting detection and FP rates. The resulting

false positives rate could be decreased to the same levels that were achieved by the

extremely costly approach relying only on watchdog features. This allows for tuning

the detection performance with respect to these two basic measures in isolation. Our

approach also allows for choosing a trade-off between energy efficiency and misbehavior

detection performance. This can be done through adjusting the time window size of

the primary F1 based detection mechanism.

We pointed out that our priming approach can be extended with optimization.

This allows for adjusting the priming thresholds P to local conditions. We also pointed

out that the co-stimulation with f0 based misbehavior classification can be substituted
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with F1 based classification with a small time window size. This is especially useful in

environments benefiting from the use of directional antennas.

Even though, we concentrated on the applicability of co-stimulation and priming to

misbehavior detection in ad hoc networks, we believe these methods are of general in-

terest. An important characteristics of application scenarios, that could take advantage

of these two methods, is the high cost connected with the relocation of information,

services or resources, and at the same time, the feasibility to improve their control or

allocation through one or several cost related parameters (such as time window size).

An example where co-stimulation and priming could be applicable is information

broadcasting. When broadcasting information to users, the demand for any type of

information can only be estimated (Vaidya and Hameed 1999). Since the users cannot

send feedback directly to the broadcast source (e.g. satellite), the feedback is sent

intermittently using other paths for delivery (often a mix of wireless and wired delivery

paths). The feedback frequency can increase the accuracy, it is however connected with

a certain cost. It thus gives sense to track the demand with some prediction accuracy

exchanged for cost efficiency.
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