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Abstract. We were inspired by the role of co-stimulation in the Biolog-
ical immune system (BIS). We propose and evaluate an algorithm for en-
ergy efficient misbehavior detection in ad hoc wireless networks. Besides
co-stimulation, this algorithm also takes inspiration from the capability
of the two vital parts of the BIS, the innate and the adaptive immune
system, to react in a coordinated way in the presence of a pathogen. We
demonstrate that this algorithm is also applicable in situations when a
(labeled) data set for learning the normal behavior and misbehavior is
unavailable.

1 Introduction and Motivation

Ad hoc and sensor wireless networks can become an object of attacks and intru-
sions. The motivation for attacking an ad hoc network can range from a desire to
benefit from the network’s services to an intent to make it non-functional. Faults
that are a result of software or hardware failures can be equally damaging. Cor-
recting the consequences of some faults or attacks might only be possible by a
costly human intervention, or not at all. Even though secure protocols address is-
sues connected with data integrity and user authentication, the experience with
the Internet shows that flaws in these protocols are continuously being found
and exploited [1].

This establishes the basic motivation for designing autonomous detection
and response systems that aim at offering an additional line of defense to the
employed secure protocols. Such systems should provide several layers of func-
tionality including the following: (i) distributed self-learning and self-tuning with
the aspiration to minimize the need for human intervention and maintenance, (ii)
active response with focus on attenuation and possibly elimination of negative
effects of faults or attacks on the network.

In many scenarios ad hoc and sensor networks are expected to be based
on wireless devices with limited (battery) resources. In order to stimulate the
survivability of such networks, it is essential that autonomous detection and
response systems reflect these resource constraints.
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Best current practices for misbehavior detection in ad hoc wireless networks
are almost exclusively done on a domain knowledge basis; see [2] and references
therein. Although such an approach allows to find a good predictor for a specific
type of misbehavior, it fails to address a broader range of issues. Furthermore,
the area of energy efficient misbehavior detection remains to be a challenging
problem.

We assume that upon deployment of an ad hoc network, an enforcement
of operational strategies in an energy efficient way is desired. Such operational
strategies may impose performance limits in the form of e.g. a maximum data
packet loss at a node. One possibility for determining whether a node keeps
forwarding data packets is monitoring by other nodes. This is however a very
costly approach since the monitoring nodes cannot enter a sleep mode to preserve
their energy resources. It is therefore necessary that monitoring will be kept to
a minimum.

Our aim was to design a system offering a reasonable tradeoff between energy
efficiency and misbehavior classification performance. Our contribution is an
algorithm that allows for energy efficient misbehavior detection that can also
be applied to e.g. just deployed ad hoc networks. Such ad hoc networks have
none or a very limited data basis for an efficient learning of the normal behavior
and misbehavior. To stimulate energy efficiency, we exploit an inherent property
of ad hoc networks in order to propagate the classification error among two
parts of our detection system. These two parts are inspired by the role of the
innate and adaptive immune systems and by their ability to communicate. Such
error propagation allows for an adaptive approach to the costly explicit behavior
monitoring by the participating nodes.

2 The Biological Immune System

The Biological immune system (BIS) [3] can quickly recognize the presence of
foreign microorganisms in the human body. It is remarkably efficient, most of the
time, in correctly detecting and eliminating pathogens such as viruses, bacteria,
fungi or parasites. When confronted with a pathogen, the BIS often relies on a
coordinated response from both of its two vital parts:

– the innate system: the innate immune system is able to recognize the presence
of a pathogen or tissue injury, and is able to signal this to the adaptive
immune system.

– the adaptive system: the adaptive immune system can develop during the
lifetime of its host a specific set of immune responses and provide immuno-
logical memory. An immunological memory serves as a basis for a stronger
immune response, should a pathogen re-exposure happen.

The form and amplitude of immune responses is pathogen dependent. In
many forms of immune reactions, the innate immune system plays an important
role in triggering a reaction from the adaptive immune system, and vice versa.
A cell gets eliminated, if it was classified by the adaptive immune system as
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a pathogen, and at the same time, the innate immune system signals that the
cell causes some damage to the human organism. Under this specific immune
reaction, only damage inflicting or infectious cells get eliminated by the BIS. This
implies that a two-way communication, hereafter referred to as co-stimulation,
between the innate and adaptive immune systems is necessary.

Communication capabilities within the BIS received an increased interest
from the Artificial immune systems (AIS) community and evolved into an inde-
pendent research direction. Several different types of danger, safe and amplifying
signals were proposed within the Danger theory due to Aickelin et al. [4].

In our work, we were motivated by the ability of the BIS to act in a coor-
dinated way when confronted with a pathogen. We show that co-stimulation in
ad hoc networks can have very positive effects in stimulating energy efficiency.

3 Related Work

The pioneering work in adapting the BIS to networking has been done by
Stephanie Forrest and her group at the University of New Mexico. In one of
the first BIS inspired works, Hofmeyr and Forrest [5] described an AIS able to
detect anomalies in a wired TCP/IP network. Co-stimulation was in their setup
done by a human operator who was given 24 hours to confirm a detected attack.

Sarafijanović and Le Boudec [6] introduced an AIS for misbehavior detection
in mobile ad hoc wireless networks. They used four different features based
on the network layer of the OSI protocol stack. They were able to achieve a
detection rate of about 55%; they only considered simple packet dropping with
different rates as misbehavior. A co-stimulation in the form of a danger signal
emitted by a connection source was used to inform nodes on the forwarding path
about perceived data packet loss. Such signal could then be correlated with local
detection results and suppress false positives.

An AIS for sensor networks was proposed by Drozda et al. in [7]. The imple-
mented misbehavior was again simple packet dropping; the detection rate was
about 70%.

Classification techniques proposed in [5–7] are based on negative selection, a
learning mechanism applied in training and priming of T-cells in the thymus. In
the computational approach to negative selection due to D’haeseleer et al. [8], a
complement to an n-dimensional vector set is constructed. This is done by pro-
ducing random vectors and testing them against vectors in the original vector
set. If a random vector does not match anything, according to some matching
rule in the original set, it becomes a member of the complement (detector) set.
These vectors are then used to identify anomalies (faults/misbehavior). Tim-
mis et al. [9] recently showed that negative selection is NP-complete, if the
n-dimensional vectors are represented as bit-vectors and the matching/testing is
done using the r-contiguous bits matching rule [8]. In general, the negative selec-
tion process, in the current interpretation, does not seem to have the potential
to be used for misbehavior detection in ad hoc wireless networks.
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An approach based on the Danger theory avoiding the inefficiency of the
negative selection was proposed by Kim et al. in [10]. Several types of danger
signals, each having a different function are employed in order to detect routing
manipulation in sensor wireless networks. The authors did not undertake any
performance analysis of their approach.

Drozda et al. [11] used a forward feature selection process together with
a wrapper approach [12] to identify a suitable set of features for misbehavior
detection. A co-stimulation inspired architecture with the aim to decrease the
false positives rate while stimulating energy efficiency is proposed and evaluated.

Even though the BIS seems to be a good inspiration for improving misbe-
havior detection in ad hoc and sensor networks, approaches based on machine
learning and similar methods received much more attention; see [2] and the
references therein. Despite recent efforts, energy efficient misbehavior detection
however remains to be a challenging problem.

4 Protocols and Assumptions

We now review several protocols, mechanisms, assumptions and definitions rel-
evant to our experiments.

An ad hoc network can be defined as a net N = (n(t), e(t)) where n(t), e(t) are
the set of nodes and edges at time t, respectively. Nodes correspond to wireless
devices that wish to communicate with each other. An edge between two nodes
A and B is said to exist when A is within the radio transmission range of B and
vice versa. A sensor network is a static ad hoc network deployed with the goal
to monitor environmental or physical conditions such as humidity, temperature,
motion or noise.

AODV is [13] is an on-demand routing protocol that starts a route search
only when a route to a destination is needed. This is done by flooding the
network with RREQ (= Route Request) control packets. The destination node
or an intermediate node that knows a route to the destination will reply with a
RREP (= Route Reply) control packet. This RREP follows the route back to
the source node and updates routing tables at each node that it traverses. A
RERR (= Route Error) packet is sent to the connection originator when a node
finds out that the next node on the forwarding path is not replying.

At the MAC (Medium access control) layer, the medium reservation is often
contention based. In order to transmit a data packet, the IEEE 802.11 MAC
protocol uses carrier sensing with an RTS-CTS-DATA-ACK handshake (RTS =
Ready to send, CTS = Clear to send, ACK = Acknowledgment).

In promiscuous mode, a node listens to the on-going traffic among other
nodes in the neighborhood and collects information from the overheard packets.
Promiscuous mode is energy inefficient because it prevents the wireless interface
from entering sleep mode, forcing it into either idle or receive mode. There is
also extra overhead caused by analyzing all overheard packets. According to [14],
power consumption in idle and receive modes is about 12-20 higher than in sleep
mode. Promiscuous mode requires that omnidirectional antennas are used.
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We do not assume any node location knowledge or time synchronization
among nodes. We assume that packets are authenticated, i.e. the sender of any
packet can be easily identified as well as can be changes in the packet body. This
is a reasonable assumption in line with e.g. the ZigBee specification [15].

5 Misbehavior Modeling and Classification Performance

Evaluation

Node misbehavior can be the result of an intrusion or failure. We considered
three types of misbehavior: (i) DATA packet dropping: 30% DATA packets were
randomly and uniformly dropped at misbehaving nodes. (ii) DATA packet de-
laying: 30% DATA packets were randomly and uniformly delayed by 0.1 second
at misbehaving nodes. (iii) Wormholes [16]. Wormholes are private (out-of-band)
links between one or several pairs of nodes. They are added by an attacker in
order to attract data traffic into them to gain control over packet routing. This
could lead to packet data load manipulation.

In order to simplify the experiments, we decided to merge these three types
of misbehavior into a single class called “misbehavior”. This means, when eval-
uating the classification performance of our approach, we will apply a “normal
vs. misbehavior” classification scheme. The necessary traffic samples for these
two classes were created through network simulation by applying one of the
above misbehavior models or running a misbehavior free simulation. Natural
data packet losses (noise) due to e.g. collisions at the MAC layer amounted to
0 − 15%. The detailed experimental setup is discussed in one of the following
sections.

Classification performance in our experiments was evaluated in terms of de-
tection rate and false positives (FP) rate. The two measures were computed as
follows:

det. rate =
ccj

ncj

× 100.0% FP rate =
FPcj

ncj

× 100.0% (1)

where cj = {normal,misbehavior}. ncj
is the number of vectors (samples)

labeled with the class cj ; note that ncj
> 0 in all our experiments. ccj

is the
number of vectors that were correctly classified by the induction algorithm as
belonging to the class cj . FPcj

is the number of samples incorrectly predicted
as belonging to cj . 95% confidence intervals (CI95%) were computed for each
measure. Classification performance with respect to a vector set was evaluated
by means of the classification error:

class. error =

∑
cj

FPcj

∑
cj

ncj

× 100.0% (2)

6 Co-stimulation in Ad Hoc and Sensor Networks

Drozda et al. [11] introduced and evaluated an architecture inspired by the in-
terplay between the innate and adaptive immune system. 24 features suitable
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for misbehavior detection from several layers of the OSI protocol stack were con-
sidered. These features were divided into several subsets with respect to their
energy requirements and protocol assumptions. A wrapper approach [12] was
used to identify features with a statistically significant contribution to the classi-
fication process. Due to their relevance for our experimental setup, the features
that were found significant are listed below.

6.1 The Features

Let ss, s1, ..., si, si+1, si+2, ..., sd be the path between ss and sd determined by
a routing protocol, where ss is the source node, sd is the destination node.
Features in the following feature set f are averaged over a time window. We use
the feature labels (M3, M4, ...) as they were introduced in [11].

MAC Layer Features:

M3 Forwarding index (watchdog): Ratio of data packets sent from si to si+1

and then subsequently forwarded to si+2.
M4 Processing delay index (quantitative watchdog): Time delay that a

data packet accumulates at si+1 before being forwarded to si+2.

Routing Layer Features:

R5 Average distance to destination: Average number of hops from si to
any destination.

R9 Connectivity index: Number of destinations with known routes as recorded
in the routing table of node si.

R12 Diameter index: Number of hops to the furthermost destination as recorded
in the routing table of node si.

Transport Layer Features:

T1 Out-of-order packet index: Number of DATA packets that were received
by si out of order. This assumes that each DATA packet has a unique ID
computed by the connection source. Normalized by the time window size.

T2 Interarrival packet delay index 1: Average delay between DATA packets
received by si. The delay was computed separately for each connection and
then a master average was computed.

T3 Interarrival packet delay variance index 1: Variance of delay between
DATA packets received by si. The variance was computed separately for
each connection and then a master average was computed.

T4 Interarrival packet delay index 2: Average delay between DATA packets
received by si.

T5 Interarrival packet delay variance index 2: Variance of delay between
DATA packets received by si.

All the above features can be locally computed. The features T2, T3 and
T4, T5 are identical, if only DATA packets belonging to a single connection are
received by si. M3 and M4 require operation in promiscuous mode and therefore
can be considered energy inefficient. Sudden changes in R5, R9 and R12 can
help detect a topological change caused by a wormhole. This type of misbehavior
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Fig. 1. Immuno-inspired misbehavior detection approach.

increases the number of nodes lying within a fixed number of hops from si. We
consider the following two subsets of the feature set f :

1. f0 = {M3,M4}.
2. f1 = {R5, R9, R12, T1, T2, T3, T4, T5}.

Besides energy efficiency, these two feature subsets have a very different ex-
pressive power. For example to show that si+1 is misbehaving, either f0 com-
puted at si is necessary or f1 computed at both si and si+2 is necessary [11].
In other words, in case of f1 measurements from several nodes are required, i.e.
the output measured at si+2 must be compared with the input at si in order to
identify si+1 as misbehaving. In the following, we use fsi

0 , fsi

1 to denote f0, f1

computed by the node si, respectively.

6.2 A Co-stimulation Based Approach

To achieve a robust detection performance, a co-stimulation inspired mechanism
is considered in [11]. This mechanism attempts to mimic the ability of communi-
cation between various players of the innate and adaptive immune system. More
specifically, the inspiration was based upon the observation that a cell will not
be marked as infectious and thus eliminated as long as no co-stimulation from
other BIS players is received. Thus by analogy, a node should not mark another
node as misbehaving as long as it does not receive a co-stimulatory signal from
other parts of the network.
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The co-stimulation inspired approach is depicted in Fig. 1. Each node in
the network computes the feature set f1. This feature set is then proliferated
upstream (towards the connection source); see Fig. 1(a). Each f1 travels exactly
two hops; in our example from si+2 to si. If si receives f1 originating at one of
its neighbors, it will forward f1 in the upstream direction. If f1 is not originating
at one of its neighbors, it is used but not forwarded.

Since the computation of f1 is time window based, the frequency with which
f1 gets sent depends on the time window size. Upon receiving f1 from a two-
hop neighbor, the node si combines and evaluates it with its own f1 sample;
see Fig. 1(b). Based on this, a behavior classification with respect to the node
si+1 is done. If si classifies si+1 as misbehaving, then it computes a sample
based on the f0 feature set. This means, a co-stimulation from the f1 based
classification approach is needed in order to activate the energy less efficient f0

based classification approach; see Fig. 1(c). If misbehavior gets confirmed, the
node si+1 is marked as misbehaving. Note that si can receive f1 samples from
several two-hop neighbors; see Fig. 1(d) for an example.

The proliferation of f1 can be implemented without adding any extra com-
munication complexity by attaching this information to CTS or ACK MAC
packets. As long as there are DATA packets being forwarded on this connection,
the feature set can be propagated. If there is no DATA traffic on the connection
(and thus no CTS/ACK packets exchanged), the relative necessity to detect the
possibly misbehaving node si+1 decreases. Optionally, proliferation of f1 can be
implemented by increasing the radio radius at si+2, by broadcasting it with a
lower time-to-live value or by using a standalone packet type.

If the node si+1 decides not to cooperate in forwarding the feature set in-
formation, the node si will switch, after a time-out, to the feature set f0 com-
putation. In this respect, not receiving a packet with the feature set f1 can be
interpreted as a form of negative co-stimulation. If the goal is to detect a mis-
behaving node, it is important that the originator of f1 can be unambiguously
identified, i.e. strict authentication is necessary. An additional requirement is the
use of sequence numbers for feature sets f1. Otherwise, the misbehaving node
si+1 could interfere with the mechanism by forwarding outdated cached feature
sets f1.

We introduce the following notation in order to keep track of composite fea-
ture sets f1 computed at the nodes si and si+2: F

si

1 = fsi

1 ∪f
si+2

1 . For simplicity,
we will omit the superscript.

The mechanisms of the innate immune system bear a certain resemblance to
the f0 based classification phase; see Fig. 1(c). The innate system is for exam-
ple very efficient in signaling tissue injury or damage to the adaptive immune
system. To a certain degree it relies on some very rudimentary methods such
as recognizing an unusually high level of dead or damaged self cells (e.g. blood
cells). This can be directly compared with the very straightforward functional-
ity of watchdogs. Similarly, the more learning extensive classification approach
based on F1 (Fig. 1(b)) can be compared with the adaptive immune system.
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6.3 An Error Propagation Algorithm for Ad Hoc Networks

In [11] it was concluded that as the size of the time window decreases, the
classification ability of the feature sets f0 and F1 will equalize. That is:

lim
win. size→0

class. error(F1) ≈ class. error(f0) (3)

This is a natural consequence of the fact that instead of observing a data
packet’s delivery in promiscuous mode by the node si, it can be equally well done
in a cooperative way by si and si+2, if the window size (sampling frequency)
is small. In other words, if the time window is small enough that it always
includes only a single event, the relationship between events at si and si+2

becomes explicit. This is however connected with a very high communication
cost (each packet arrival at si+2 must be explicitely reported to si). The following
observations can be formulated:

– If using f0, the thresholds for the watchdog features can be set directly,
for example M3 could be set to 0.90 (90% data packets must be correctly
forwarded) in order to classify si+1 as misbehavior free.

– If using F1 with win. size ≫ 0, learning based on data traffic at both si

and si+2 must be done. Feature averaging over a time window increases
the classification task complexity. Frequency of the extra communication
between si and si+2 depends on the time window size.

Considering the above two observations and Eq. 3, we propose the following
algorithm.

Error Propagation Algorithm:
1. Choose desired levels (thresholds) for the forwarding and processing delay

indexes denoted as M3D and M4D, respectively.
2. The network starts operating. Allow all nodes to use promiscuous mode.

Each node builds f0 and F1 sample sets. Disable promiscuous mode at a
node, when the sample set size reaches a target value.

3. Label the F1 based samples. A F1 based sample will be labeled as “normal”,
if in the f0 based sample from the corresponding time window, M3 ≥ M3D

and M4 ≤ M4D, and as “misbehavior” otherwise.
4. Error propagation: compute a classifier by using only the samples based on

F1.
5. Use the F1 based classifier computed in the above step to classify any fresh

F1 samples. Co-stimulation: if a sample gets classified as “misbehavior”,
allow si to compute a f0 sample in promiscuous node.

6. Classification: apply the M3D and M4D thresholds to the fresh f0 based
sample. If the “misbehavior” classification gets confirmed, mark si+1 as mis-
behaving. Normal behavior can get classified in a similar way.

The algorithm is schematically depicted in Fig. 2(a). The error propagation
step utilizes the rule described in Eq. 3. The classification error induced by
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Fig. 2. Error propagation algorithm.

the M3D and M4D threshold values gets this way propagated onto the F1

feature set. Since for practical reasons win. size ≫ 0 must hold, a co-stimulation
(F1 −→ f0) is necessary for improving the classification performance. The less
energy effcient f0 based classification is thus used only if a co-stimulation from
its F1 based counterpart is present. In other words, any detection based on F1

(adaptive immunity) must coincide with some damage being explicitely detected.
This damage detection is based on f0 (innate immunity).

The rule in Eq. 3 implicates that the final classification performance should
equal the classification ability of the two watchdog features M3 and M4, if a
small time window is applied. This implies that the values for M3D and M4D

must be reasonably chosen in order to minimize the classification error.

The error propagation algorithm can be extended with an optimization phase;
see Fig. 2(b). The classification outcome can be used to find new thresholds for
the f0 based samples. In this case, the threshold values M3D,M4D serve as
seed values for the whole process. Then it is possible to relabel the F1 samples
and to recompute the related classifier. Co-stimulation and classification phases
are then executed. In general, any suitable optimization procedure with several
optimization and error propagation cycles could be applied. In order to use this
extended approach in a distributed way, an estimation of natural packet losses
(noise) at nodes must be done.

As shown in Fig. 1(d), any F1 computation is also based on the informa-
tion available at si+2. This two-hop dependency can be compared to synapses
among neurons. Under this comparison, our extended approach bears a certain
similarity to the backpropagation algorithm for artificial neural networks [17].
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7 Experimental Setup

The network simulation was done with the JiST/SWANS [18] network simulator.

Topology, Connections, Data Traffic and Protocols: We used a topology based
on a snapshot from the movement prescribed by the Random waypoint move-
ment model [19]. There were 1,718 nodes simulated; the physical area size was
3,000m × 3,000m. We used this topology because it has been quite extensively
studied by Barrett et al. in [20]; results reported therein include many graph-
theoretical measures that were helpful in finding suitable parameters for our
experiments.

We modeled data traffic as Constant bit rate (CBR), i.e. there was a constant
delay when injecting data packets. This constant delay in our experiments was 2
seconds (injection rate of 0.5 packet/s); the packet size was 68 bytes. CBR data
packet sources correspond e.g. to sensors that transmit their measurements in
predefined constant intervals. CBR can be considered due to its synchronized
nature an extreme model for data packet injection. In fact, the results published
in [21] show that when using a stochastic injection model, such as the Poisson
traffic model, one can expect a better performance of the detection system.

We used 50 concurrent connections. The connection length was 7 hops. In
order to represent a dynamically changing system, we allowed connections to
expire. An expired connection was replaced by another connection starting at a
random source node that was not used previously. Each connection was scheduled
to exist approximately 15 to 20 minutes. The exact connection duration was
computed as

δ + rUλ (4)

where δ the desired duration time of a connection, rU a random number
from the uniform distribution [0, 1] and λ the desired variance of the connection
duration. In our experiments, we used δ = 15 min and λ = 5 min.

We used the AODV routing protocol, IEEE 802.11b MAC protocol, UDP
transport protocol and IPv4. The channel frequency was set to 2.4 GHz. The
bandwidth was set to 2 Mbps. Antenna and signal propagation properties were
set so that the resulting radio radius equals 100 meters.

Misbehavior: There were 20 wormholes in each simulation run; each worm-
hole was designed to bypass 15 hops, i.e. the source and sink were 15 hops away
before a given wormhole was activated. There were 236 nodes randomly chosen
to execute DATA dropping or delaying misbehavior. Our intention was to model
random failure occurrences, assuming a uniform failure distribution in the net-
work. As it is hard to predict the routing of packets, many of these nodes could
not execute any misbehavior as there were no DATA packets to be forwarded by
them. In our case, about 20-30 misbehaving nodes were concurrently active.

Experiments: We did 20 independent runs for each misbehavior type and 20
misbehavior free (normal) runs. The simulation time for each run was 4 hours.
We used a non-overlapping time window approach for features’ computation. We
used four different time window sizes: 50, 100, 250 and 500 seconds. In case of a
500-second time window, there were 28 non-overlapping windows in each run (4
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Normal Misbehavior

Win. size[s] Det. rate CI95% FP rate CI95% Det. rate CI95% FP rate CI95%

f0 (M3D and M4D)

50 96.15 1.96 0.46 0.02 99.25 0.05 6.36 7.01
100 96.25 2.01 0.20 0.01 99.68 0.03 6.16 7.10
250 96.17 2.11 0.15 0.01 99.76 0.03 6.28 7.33
500 95.84 2.17 0.12 0.01 99.81 0.04 6.71 7.20

F1

50 93.56 2.37 2.09 0.20 96.54 0.61 10.59 9.08
100 92.38 2.64 2.81 0.49 95.27 1.71 12.45 9.68
250 89.05 2.91 5.04 0.90 91.55 2.29 17.97 11.78
500 86.10 3.93 7.49 1.60 87.69 1.78 22.36 11.94

F1 and then f0 (M3D and M4D)

50 93.23 2.40 0.12 0.01 95.48 0.89 5.41 5.67
100 92.24 2.66 0.05 0.00 94.24 2.44 5.24 6.02
250 88.97 3.00 0.06 0.00 90.35 3.00 5.23 6.10
500 86.04 3.95 0.06 0.01 85.51 2.39 4.84 5.31

Table 1. Performance. M3D = 0.975, M4D = 4ms.

hours/500 seconds = 28.8). This gave us 5 × 28 × 20 = 2,800 vectors (samples)
for each node. This also determined the max. target sample size for Step 2 of
our algorithm.

M3D and M4D threshold values: We set M3D to 97.5% and M4D to 4ms.
These values were found through the extended approach shown in Fig. 2(b)
using the “trial and error” method (as a substitute for a formal optimization
approach).

Induction algorithm: We used a decision tree classifier. To decide whether a
node within the decision tree should be further split (impurity measure), we used
the information gain measure [17]. As the decision tree classifier is a well-known
algorithm, we omit its discussion. We refer the interested reader to [17]. We used
the decision tree implementation from the Rapidminer tool [22].

The estimation of classification performance was done using a stratified k-fold
cross-validation approach [17] with k = 20.

8 Performance Evaluation

The results achieved by applying the error propagation algorithm are reported in
Table 1. It can be seen that as the time window size decreases, the performance of
f0 and F1 becomes more and more comparable. It can be also seen that the final
co-stimulation with f0 improves the performance only in a limited way compared
to the f0 only approach. More specifically, the FP rate for ”normal” behavior
could be significantly decreased. The confidence intervals (CI95%) belonging to
the FP rates for ”normal” behavior are almost zero. The FP and CI95% rates
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for ”misbehavior” could not be significantly decreased compared to f0. This
performance gap between ”normal” and ”misbehavior” originates from the fact
that learning ”normal” is simpler than learning ”misbehavior”. In the latter case,
samples which belong to ”normal” are often misinterpreted as misbehaving. This
is a result of the unsophisticated initial sample separation (labeling) based only
on the two watchdog features. This increases the FP rate and the CI95% of the
misbehavior class.

The average sample size per node was 6,941, if the window size was set to 50
seconds. As not every node was continuously involved in data packet forwarding,
the sample size was lower than the theoretical max. size.

Notice that according to our approach, when detecting a misbehavior, the
more costly f0 based detection will only get used, if (i) a true positive was
detected by F1 or (ii) a false positive was mistakenly detected by F1. This means,
for a misbehavior free ad hoc network, the energy saving over an exclusive f0

approach is proportional to 1 − FP rate, where FP rate is in this case the F1

based false positives rate for the misbehavior class.

9 Conclusions

We proposed and tested an approach inspired by the role of co-stimulation in
the BIS. Our preliminary results show that this approach has a positive effect on
both energy efficiency of misbehavior detection and the false positives rate. The
achieved detection rate was in the 86− 95% range depending on the monitoring
window size. Our error propagation algorithm can be used for both misbehavior
detection as well as for checking whether an ad hoc network complies with its
operational strategy. We pointed out that our approach can be extended with an
optimization technique that would allow for a classification error minimization.
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