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Abstract—The KDD99 network intrusion contest and the
related intrusion data sets attracted increased attention of the
research community. The success rate of contest participants
was evaluated in terms of the obtained classification cost. The
classification cost of the contest winner was 0.2331, the best
approach prior to our work carries the classification cost of
0.2224. We show that a simple approach based on cascading
classification leads to the classification cost of 0.2079.

Cascading classification is in our case done by applying
2-nearest-neighbor classification. The samples which could
not be predicted with 2-nearest-neighbor classification (4-6%)
are further classified with a clustering approach with class
priority. This clustering approach when applied in isolation
underperforms other approaches. However, when applied in
cascading classification, it can take advantage of the reduced
number of samples. We argue that cascading classification is
a viable alternative in scenarios where less complex machine
learning approaches are favorable, for example due to possible
performance degradation in resource constrained devices such
as mobile phones, embedded systems or sensors.

Keywords-Exact Euclidean Locality Sensitive Hashing
(E2LSH), k-nearest-neighbor  classification; cascading
classification; KDD99 classifier learning contest; intrusion
detection.

I. INTRODUCTION

Cascading classification is based on the rationale that a
large number of samples in a data set can be correctly
classified with a less complex classifier. At the next stage, a
classifier, which targets a specific property of the remaining
samples, can be applied. The number of stages in cascading
classification reflects the number of such specific properties.

This form of multi-stage classification can also lead to
cost efficiency. This can be achieved when classifiers are
applied in increasing order of cost. The highest cost classifier
is thus only applied to a sub-set of samples. This can be of
advantage in distributed environments such as wireless mesh
networks or sensor networks, where classification accuracy
depends on information which needs to be transmitted over
wireless medium. A more frequent information exchange
can lead to a higher classification accuracy, however, each
information exchange incurs a communication cost. This
can give rise to a trade-off between classification accuracy
and cost [1]. Cascading classification can thus be applied in
scenarios where a specific trade-off needs to be achieved in
order to keep costs in limits.

Table I
THE KDD’99 COST MATRIX [2].

Predicted
normal | probe | DOS | U2R | R2L
normal 0 1 2 2 2
. | probe 1 0 2 2 2
£ | DOS 2 1 0 2 2
< | U2R 3 2 2 0 2
R2L 4 2 2 2 0

Our focus herein is on cascading classification applied to
network intrusion detection. Since creating a data set which
captures a network operation under normal behavior and
under various attacks may require a long period of time,
we rely on a benchmark data set. This data set was given to
the participants of the classifier learning contest which was
held during the 1999 Conference on Knowledge Discovery
and Data Mining (KDD?99).

The task for the participants of the KDD99 classifier
learning contest was to correctly predict when network
behavior is normal and when an attack is underway [2].
The contest participants were given a training data set well
before the conference started. During the conference, the
participants were presented with a test data set which had
a different class distribution. It also included several novel
attacks not present in the learning data set. The attacks fall
into one of four different classes:

o probe - surveillance and other probing,

o denial of service (DOS),

o user-to-root (U2R) - unauthorized access with superuser
(root) privileges

o remote-to-local (R2L) - unauthorized access from a
remote machine.

The success rate of each participant was evaluated in
terms of classification cost. After samples in the test data
set were predicted, each contest participant submitted his/her
confusion matrix for evaluation. A confusion matrix contains
information about actual and predicted classifications done
by a classifier. Then the classification cost £ € R for each
confusion matrix was computed. The average cost is defined
as a sum of the products of confusion matrix and cost
matrix (see Table I) divided by the number of total predicted



Table II
THE RESULT OF KDD99 WINNER [2]; £ = 0.2331.

Predicted
normal | probe DOS | U2R | R2L
normal 60262 243 78 4 6
Tg probe 511 3471 184 0 0
S | DOS 5299 1328 | 223226 0 0
< | U2R 168 20 0] 30 10
R2L 14527 294 0 8 | 1360
samples:
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where ¢; ; is a count of samples known to be in class ¢ but
predicted to be in class j; b; ; is the corresponding entry of
the cost matrix; 0 < 4,5 < 4 (there were 4 intrusion classes
and one normal class).

Each sample in either the learning or test data set had 41
features. The test data set contained the following numbers
of samples: normal 60,593 (19.48%), probe 4,166 (1.34%),
DOS 229,853 (73.9%), U2R 228 (0.07%) and R2L 16,189
(5.2%), together 311,029 labeled samples.

The rest of this document is organized as follows. In
Section II we discuss the related work. In Section III we
argue that 2-nearest-neighbor classification can lead to a
more favorable classification cost than the complex approach
applied by the KDD99 contest winner. We introduce cascad-
ing classification and discuss how it can take advantage of
2-nearest-neighbor classification. In Section IV we define
the measures that we apply when reasoning about classifier
performance. In Section V we present our results obtained by
applying cascading classification, and finally, in Section VI
we conclude.

II. RELATED WORK

Since its introduction, the KDD intrusion detection data
set attracted a lot of attention from the research community.
An interesting fact remains that despite a continued research,
the current best results with respect to classification cost
are near the original contest winner, who, compared to his
followers, had an incomparably shorter time to come up with
an effective classification approach.

Table II shows the confusion matrix of the KDD99 com-
petition winner [3]. The winning method was based on a set
of C5 decision trees and a classification error minimization.
The classification cost of the winning entry was 0.2331.

The 10th placed entry in the KDD99 contest was based
on a l-nearest-neighbor classifier [2]. The confusion matrix
is shown in Table III. The classification cost was 0.2523.
According to [2], any result with the classification cost of
under 0.27 was considered by the contest organizers as well
performing. Any result with the classification cost of over
0.29 was considered as inferior.

Table IIT
THE RESULT OF THE BEST 1-NEAREST-NEIGHBOR CLASSIFIER OF
KDD99 [2]; £ = 0.2523.

Predicted

normal | probe DOS | U2R | R2L

normal 60322 212 57 1 1
§ probe 697 3125 342 0 2
S | DOS 6144 76 | 223633 0 0
< | U2R 209 5 1 8 5
R2L 15785 308 1 0 95

Table IV

2-NEAREST-NEIGHBOR CLASSIFIER [4]; £ = 0.1767 (NOT CONSIDERING
UNDECIDED SAMPLES).

Predicted
normal | probe DOS | U2R | R2L | undecided
normal | 58400 75 32 4 5 2077
'S | probe 10 | 2267 3 0 0 1886
5 | DOS 5174 0 | 221346 0 0 3333
<| U2R 17 0 0 1 1 209
R2L 10531 0 2 9 | 538 5109

Koc et al. [5] introduced a classification approach based
on several types of classifiers. Their focus was on naive
Bayes classification. As input they only applied discrete
values which were obtained with several pre-processing dis-
cretization methods (Entropy Minimization Discretization,
Proportional k-Interval Discretization). To lower computa-
tion cost they applied three filter feature selection methods
(Correlation, Consistency, INTERACT); for a comparison
see Sanchez-Marono et al. [6]. The classification cost that
they could obtain was 0.2224. This is to our best knowledge,
approach offering the lowest classification cost. The authors
do not provide any confusion matrix.

Xiang et al. describe hybrid classifier approach [7]. The
critical step in their approach was to separate out the U2R,
R2L and normal samples. They used unsupervised learning
such as Bayesian and k-means clustering. The final set had
178 clusters. Then these clusters got labeled applying the
rule that samples get predicted as normal samples only if
none of the training samples within the clusters are U2R
or R2L attacks. They did not compute the classification
cost, however, they obtained a high detection rate for U2R
(71.43%) and R2L (46.97%). Obtaining a high detection
rate for these two classes is critical for obtaining a low
classification cost. Note the high cost penalty in Table I for
misclassifying R2L as normal behavior.

III. CAN WE DO BETTER?

Marcek et al. [4] proposed an approach which is based on
approximate 2-nearest-neighbor computation. If both of the
two approximate nearest neighbors shared the same label,
then the sample would be predicted to belong to this class.
If this is not the case, the test sample is marked as undecided.

The data sets for this approach were normalized and the



2-nearest-neighbor computation only considered neighbors
within a certain distance R. If two nearest neighbors could
not be found within R, then the prediction would be unde-
cided as well. Table IV shows the results using 2-neighbor
classification with R set to 0.1. The classification cost not
considering undecided test samples was 0.1767. The rate of
undecided samples was 4.06%.

There are several alternatives for dealing with undecided
samples. One obvious alternative is to run a more complex
classification algorithm on undecided samples in the hope
that these additional classification will provide good results.

Let us now analyse the classification cost & when unde-
cided samples get assigned to a given class. Note that the
cost matrix shown in Table I was available to the contest
participants. By assigning the undecided samples to a chosen
class, the following classification cost is possible:

e £ = 0.2211, if the undecided samples get assigned to
the probe class. The rational is that assigning samples
to this class carries the least cost; see Table 1.

e & = 0.2178, if the undecided samples get assigned
to the R2L class. This is the least classification cost
possible with this approach.

e £ = 0.2647, if the undecided samples get assigned to
the normal class. This is worse than the best current
approach, however, it offers a low false alarm rate of
0.052%.

If we assume that the undecided samples can be classified
with an infallible classifier then we get the following cost:

o & = 0.1695, if each undecided sample gets correctly
classified.

The open question that we address herein is whether a
classification cost lower than 0.2178 is possible and how
close we can get to 0.1695. Our approach is to apply a
machine learning approach to classify undecided samples.

Let us now explain our approach in formal terms. Let /K
and K be classifiers. We first apply K to classify samples,
in our case K is done as 2-nearest-neighbor classification.
The samples that K; could not classify are sent to Ko
for further classification. We are thus looking at cascading
classification with two classifiers. This can be generalized to
a larger number of classifiers. Herein we use the following
notation for two-classifier cascading classification:

Ko K.

Cascading (multi-stage) classification, where the next
classifier in a classifier chain is applied upon the result
of the previous classifier, was introduced by Kaynak and
Alpaydin [8]. Therein the authors state “at the next stage,
using a costlier classifier, we build a more complex rule to
cover those uncovered patterns of the previous stage”.

Unlike other ensemble classification approaches such as
stacking, boosting or bagging, cascading classification re-
ceived much less attention from the research community.

Gama and Brazdil [9] did an empirical study that applied
several combinations of classifiers such as Bayes classifier,
C4.5 decision tree classifier and linear discriminant function.
They tested cascading classification on several standard
data-sets from the UCI Repository [10]. Their results were
non-conclusive about whether cascading classification can
offer an advantage over single classifier approaches or other
ensemble classification approaches.

Next, we define several key performance measures that
we apply when evaluating classification performance.

IV. CLASSIFIER PERFORMANCE EVALUATION

Detection rate for class 7 is defined as:
Cii

>
J
False negatives rate can then be defined as:
FNl =1- DetRZ- (3)
False positives rate is defined as follows:
D Cij ~ Ci
FP, “)

_ J
> Chyj = D Chyi
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where 0 < k < 4. Accuracy is the probability that a sample
gets correctly classified:

Z Cii
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V. CASCADING CLASSIFICATION: RESULTS

Two types of training data sets are available: complete
and short. The complete training data set has about 5 million
samples, whereas the shorter version has 494,021 samples.
Both these training data sets include duplicate samples. We
removed these duplicate samples and obtained two training
data sets with 1,074,974 and 145,584 samples, respectively.

In our experiments, we used both these training data sets.
When the shorter version is used, we indicate this fact with
an asterisk *.

A. Ki Classification

As previously discussed, K; is based on 2-nearest-
neighbor classification. We apply an approximate approach
to nearest neighbor classification due to Andoni and In-
dyk [11]. We use the implementation of approximate
nearest-neighbor classification (E2LSH) from the same au-
thors [12]. E2LSH considers samples within a certain dis-
tance R. In our experiments, we set this parameter to 0.1.
E2LSH applies hashing to buckets as an underlying data
structure. Since E2LSH is an approximate approach there is
a certain chance of collision in a bucket. We set the collision



parameter to 90%, which corresponds to 10% probability
that nearest neighbor is not reported.

The advantage of this approximate nearest-neighbor clas-
sification is that it can be applied also in the case when the
number of features is prohibitively large, for example there is
support in the literature that decision tree classification does
not scale well with the number of features [11]. Applying
such an approximate method could be of advantage when
cascading classification is applied to resource constrained
devices such as mobile phones.

B. K5 Classification

K> in our case evaluates undecided samples, which are
a result of 2-nearest-neighbor classification. Ky is im-
plemented in Rapidminer tool [13], which also includes
Weka [14], a machine learning library which implements
a wide range of classification approaches.

The KDD99 data set contains 7 nominal features and
34 continuous features. Out of 7 nominal features 4 could
be directly mapped to either O or 1. In order to allow
for classification with E2LSH or X-Means clustering, the
remaining nominal features have to be transformed.

We count unique values in each nominal feature. Then
we map them into a point of dimensionality D, where D
is number of unique values found in data set. In other
words, the dimensionality of data set grows by D per feature
mapping. For example (1,0,0,0,0) corresponds to a unique
value mapped to a point. This is repeated for each nominal
feature that could not be directly mapped, i.e. in our case to
3 features.

The above procedure is applied to the training data set.
The test data set includes features with unique values not
mapped previously. Since the distance between two mapped
unique values in training data set is constant (as per above
described procedure), this rule is transferred to test set for
un-mapped features. The rationale is that dimensionality of
various data sets must remain unchanged.

For example, in a space of dimensionality 2, we are able
to find 3 points which satisfy the condition of constant
distance between them. That is, in a D-dimensional space,
we are able to distribute D41 points having constant mutual
distance.

In order to obtain a good classification performance, we
first apply forward feature selection. The goal of feature
selection is to obtain a subset of features which are relevant
in classification. Having less features leads to lower learning
complexity, and thus to more efficient classification. We ap-
plied both forward selection (FS) and backward elimination
(BE). Forward selection starts with an empty feature set.
New features are added to this set in a greedy manner,
when a feature, which can increase accuracy the most,
is added. Backward elimination starts with a feature set
which contains all considered features. Features that do not

Table V
KDD99 TRAINING DATA SET: RESULTS.

Classifier Acc [%] # features £

WAODE+FS | 98.99£0.02 2 0.01902
HNB+FS 98.951+0.03 4 0.01911
RBFENI1+4FS 98.9540.02 4 0.01945
RBFN2+FS 98.96+0.04 4 0.01914
RBFN3+FS 98.831+0.13 3 0.02094
RBFNS5+FS 98.80+0.19 5 0.02135
NB+FS 98.59+0.01 7 0.08713
NB+BE 98.5840.02 12 0.09235

decrease accuracy get removed from the feature set, i.e. they
get eliminated.

The classifiers that we applied after nominal feature
transformation and feature selection are:

« Weka WAODE (Weightily Averaged One-Dependence
Estimators) [15]. This algorithm assigns different
weights to one-dependence classifiers, which over-
comes the attribute independence assumption of Naive
Bayes by averaging over all models in which all
attributes depend upon the class and a single other
attribute.

« Weka RBFNetwork implements a normalized Gaussian
radial basis function network. It uses k-means clus-
tering algorithm to find the centers for the Gaussian
radial basis functions. If a class is nominal, it applies
the given number of clusters per class. It normalizes
all numeric attributes to zero mean and unit variance.
We used four different setup parameters: #1{5;0.05}
#2{60,0.05} #3{20;0.0001} #5{20;0.05}, where each
tuple reflects the number of clusters to generate and
the minimum standard deviation for a cluster. Herein
we refer to these four alternatives as RBFN1, RBFN2,
RBFN3 and RBFNS.

e Weka HNB (Hidden Naive Bayes
model) [16].

e X-Means clustering [17] with the minimal number of
clusters set to 150, the maximal number of runs for k-
Means clustering set to 50 and the maximal number of
optimization steps per run set to 150. Similar to Xiang
et al. [7], the clusters get labelled according to pre-
set priority. Our priority is set as: R2L, U2R, DOS,
probe, normal. If a cluster contains a sample belonging
to R2L, then all samples in this cluster are classified as
R2L attack. Similar applies to the U2R, DOS, probe,
normal classes with decreasing priority. A sample is
assigned normal label, if and only if a cluster contains
only normal samples.

« Weka J48 is an open source Java implementation of the
C4.5 algorithm in the Weka data mining tool.

classification

We applied 10-fold cross-validation when estimating clas-
sification performance of these classifiers on the training
data set. We use the default Rapidminer parameters for



these classifiers. Their performance is shown in Table V.
# features is the number of selected features after either
forward selection or backward elimination is applied.

C. Results

Table VI shows the results when the above discussed
classifiers are applied to the test data set. F'Pporpm 1S
the false positives rate for the normal class, i.e. it is the
probability that any attack class gets classified as normal
behavior. F'N,,,., is the probability that normal behavior
gets classified as an attack. We can observe that when
approaches based on cascading classification get excluded,
the approach by Pfahringer offers the least classification cost
and the approach by Levin offers the highest accuracy.

Table VI shows the results for cascading classification.
We can see that E2LSH* © XMeans* offers the lowest
classification cost of 0.20788. In terms of accuracy, it
offers a slightly worse performance than the approach by
Levin. The fact that E2LSH* ® XMeans* results in a low
classification cost can be attributed to the decreased number
of samples that reach the K classification stage. Note that
XMeans clustering takes advantage of class priorities, a
technique that cannot be effectively applied to the complete
test data set.

Table VII shows the confusion matrix for E2LSH* ©
XMeans*. The result after each classification stage is pre-
sented as E2LSH+XMeans (the number of samples predicted
by E2LSH* plus the number of samples predicted in the
secondary stage by XMeans*). It can be seen that a large
number of R2L samples got correctly classified by XMeans.
Note that the highest cost penalty is incurred when R2L
samples get classified as normal behavior. This helped keep
the classification cost low.

VI. CONCLUSION

The KDD99 network intrusion data set, despite being the
focus of several hundred papers, could not be classified in a
way that would offer a decisive advantage over a simple
2-nearest-neighbor classification with undecided samples
assigned to the class with lowest misclassification penalty.
Applying such an approach leads to the classification cost
of 0.2178. For comparison, the classification cost obtained
by the KDD99 contest winner was 0.2331. It is clear that
the contest participants had only limited time to come up
with their solution, therefore these two classification costs
must be understood in that context.

Given our results, the fact that 1-nearest-neighbor clas-
sification landed the 10th place in the contest comes as
no surprise. A surprising factor is that the results obtained
by applying 1-nearest-neighbor classification received only
limited interest. A plausible explanation can be that the
relative success of this classification result was perceived as
specific for the KDD99 data set with limited general value.

Table VI
KDD99 TEST DATA SET: RESULTS. * INDICATES THAT THE SHORTER
TRAINING DATA SET WAS APPLIED.

Classifier I3 Acc FProrm | FNnorm
(%] (%] (%]
Plahringer [3] 02331 | 9271 | 8.188 055
1-Nearest Neighbor [2] 0.2523 92.33 9.118 0.45
Hoque et al. [18] 029999 | 8826 | 5.054 30.46
Levin [19] 02356 |[9292]| 8475 0.58
XMeans* 025709 | 8434 | |0.566 4351
XMeans 027761 | 84.09 | 2437 44.25
Weka J48 024007 | 92.60 | 8.804 051
WAODE+FS 026480 | 91.83 | 9.387 0.64
HNB+FS 026395 | 91.83 | 9.424 0.66
NB+FS 063164 | 57.12 | 2.032 84.99
NB+BE 027190 | 9147 | 9.374 255
RBEN3+FS 026365 | 91.90 | 9.347 0.68
EZLSH © XMeans 022711 | 92.14 | 6.745 261
E2LSH © WAODE+FS | 025799 | 92.19 | 9.151 0.26
E2LSH © HNB+ES 025727 | 9218 | 9.173 027
E2LSH © NB+FS 023479 | 9136 | 6.428 2.84
E2LSH © NB+BE 026335 | 91.92 | 9.104 1.77
E2LSH © RBFN3+FS | 025683 | 9225 | 9.111 030
E2LSH* © Weka J48 024343 | 9252 | 8950 0.48
E2LSH* ® XMeans* 9227 | 4760 2.85
E2LSH* © WAODE+FS | 025697 | 9224 | 9.084
E2LSH* © HNB+FS 025622 | 9224 | 9.106 0725
E2LSH* ® NB+FS 023475 | 9129 | 6303 3.37
E2LSH* © NB+BE 026241 | 9196 | 9.037 1.77
E2LSH* © RBEN3+FS | 025582 | 9231 | 9.044 027

Table VII
CONFUSION MATRIX FOR E2LSH* ® XMEANS*: UNDECIDED SAMPLES
=5.75%, £ = 0.20788.

Predicted
probe DOS | U2R | R2L
8+923 22+403 | +167 | +204

normal
normal | 57956+920

_ | probe 2+159 | 2218+645 3+732 +3 +404
g DOS 275+116 +4996 | 221322+2262 0| +882
£ | U2R 5+54 +33 +57 0 +79

R2L 10454+857 +33 +3145 +16 | +1684

As discussed above, our primary classification approach
was based on 2-nearest-neighbor classification which pro-
duced a number of undecided samples. Our goal was to
design a secondary classification procedure so that we can
obtain a lower classification cost than 0.2178. We applied a
range of classification approaches. The lowest classification
cost 0.20788 was obtained with X-Means clustering. Note
that when X-Means clustering gets applied in isolation
(without 2-nearest-neighbor classification), the obtained cost
is 0.25709.

We applied cascading classification which only received
limited attention from the research community. Interestingly,
two classifiers, each unsuitable if applied in isolation, when
applied in a cascade lead to a low classification cost.
This shows that cascading classification is a viable option,
especially, in scenarios where complex machine algorithms
such as neural networks or support vector machines cannot



be applied, for example due to performance considerations
on resource constrained devices such as mobile phones.
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