
Electric Power Exchanges with Sensitivity Matrices
An Experimental Analysis

Martin Drozda1 2

Los Alamos National Laboratory3

Los Alamos, POBOX 1663, MS M997, NM 87545

Abstract

We describe a fast incremental method for power
flows computation tailored for electric power mar-
kets. Fast in the sense that it can be used for
real time power flows computation, and incremen-
tal in the sense that it computes any additional in-
crease/decrease in line congestion caused by a par-
ticular (n-lateral) contract. Incremental methods of-
fer a powerful way of dealing with congestion con-
tingency, improve information flows among market
entities, and are easy to understand. In this docu-
ment we provide basic scaling properties for elec-
tric power markets using this method, and compare
it with methods using (linearized) power flow code.

The author is in the process of obtaining a patent
on methods, algorithms, and procedures described
in this paper.

1 Introduction

Deregulated electric power market assigns new re-
sponsibilities and tasks to market entities. The task
of system operator is to keep power flows in an elec-
tric grid within limits. The task of electric power ex-
change is to couple power producers and consumers.
Furthermore, power exchange has to communicate
with system operator to ensure stability of the grid
after contracted power is injected at a generator bus,

1Author visiting from Slovak Academy of Sciences, Institute
of Control Theory and Robotics, Slovak Republic.

2drozda@lanl.gov
3The Los Alamos National Laboratory strongly supports aca-

demic freedom and a researcher’s right to publish; therefore, the
Laboratory as an institution does not endorse the viewpoint of a
publication or guarantee its technical correctness. Research sup-
ported by the US Department of Energy under contract W-7405-
ENG.

and taken out at a load bus. This simple interaction
schema encompasses a multitude of problems that
were subdued when the centralized utility compa-
nies ruled the electricity world. Nowadays, a power
exchange has to face tens of thousand of contracts
seeking settlement each hour. For each contract it
needs to be decided whether the contract is feasi-
ble, i.e., complying with security guidelines of the
power grid. This is done by system operator, and
ideally, he should run a power flow code, and con-
sider projected power flows. This requires a fast
method of power flow computation. Furthermore,
additional power injection is going to influence mar-
ket situation. Increase/decrease in line congestion
forces consumers to buy power from different pro-
ducers as they have to obey the very same security
guidelines. The power exchange usually tries to in-
tervene and designs a set of rules aimed to resolve
congestion. This is done by charging for additional
congestion caused by a contract. Several schemata
were suggested for congestion fee computation. We
can divide them into three groups: contract path,
point-to-point, and real flow. The real flow meth-
ods ensure the fairest pricing but are computation-
ally very expensive. Some simplifications were pro-
posed, e.g., flow gates [8]. In this document we
describe a fast incremental method for power flows
computation. Fast in the sense that it can be used
for real time power flows computation, and incre-
mental in the sense that it computes any additional
increase/decrease in line congestion caused by a par-
ticular (n-lateral) contract.

Our method is based on sensitivity analysis of the
underlying power grid. For the analysis we used
a standard linearized power flow code. Let n be
number of buses, and m number of lines. We se-
quentially inject a unit amount of power into each
bus, and compute the increase in power flows on

0-7803-7087-2/01/$10.00 c© 2001 IEEE 1

each line. This way we obtain a sensitivity ma-
trix of n × m cells. The matrix can also be com-
puted analytically. The matrix is static, and needs
to be re-computed each time physical parameters of
the power grid change. This problem has been ad-
dressed by a distinct paper [6] from our team, and
we can re-compute sensitivity matrices for a mod-
erate grid size, e.g., ERCOT within a few minutes
(1-2). Computation of incremental power flows is
achieved by a single multiplication with injection
vector. Injection vectors for bilateral contracts have
the property of being very sparse, thus, the multi-
plication reduces to multiplication/addition of four
numeric values.

Our experiments show that we speed up contract ap-
proval/disapproval by system operator significantly.
Computational time grows linearly in the number of
lines, whereas in case of a standard linearized power
flow code the computational time grows polynomi-
ally. This for example means that in case of ER-
COT we were able to speed up the process more
than 120 times. With this method we were able to
simulate markets of ERCOT or WSCC on a single
PC (500MHz, 256MB). Moreover, we are able not
only approve/disapprove contract in real time, but
also compute increase/decrease in line congestion
caused by the contract, thus, giving data needed by
power exchange for congestion management.

This document is organized as follows: in Section 2
we give an overview of the market implemented
in ELISIMS, a software tool for simulating elec-
tric power markets; in Section 3 we give an insight
into the incremental method, and we show how it is
used by system operator to approve/disapprove con-
tracts; in Section 4 we show basic scaling properties
of electric power exchanges using this method, and
compare it with electric power exchanges using (lin-
earized) power flow code to compute power flows.

2 The market

For our simulation tool (ELISIMS [3]) we have cho-
sen to implement the so called continuous nodal
market. It is a market with nodal prices as op-
posed to markets with zone prices. We have de-
signed the market as a 24 hour forward market with
no possibility of spot trading. The market allows
only bilateral contracts which are processed in the
order they come. The electric power price at each
node is a function of the electric power price for the

given hour and given generator, and transmission
cost. The transmission costs are based on conges-
tion. In early versions of ELISIMS we have imple-
mented congestion fee computation based on con-
tract paths. At present, we use real-flow computa-
tion methods based on sensitivity matrices. The con-
tract paths were computed as the shortest path from
a generator to a customer. To compute the short-
est path we used Dijkstra’s shortest path algorithm
(see [2]).

Next, we describe mechanisms of our market to
make you accustomed with the interplay among all
the market entities: customers, power producers
(generators), system operator, and power exchange.
System operator is an entity which is responsible for
stability and security of the grid (under cooperation
with transmission operators and owners); it runs the
network from the physical point of view, i.e., it op-
erates buses, branches, controls grid network limits
etc. It does not have any obligations against cus-
tomers, producers, or brokers and actually it should
be completely independent from all other entities.
On request from the power exchange gives answers
on whether a new contract is going to preserve all
security and stability parameters of the network. To
cope with this task, the system operator runs a power
flow code. Based on the projected power flows,
he reasons about future security conditions on the
power grid. The power flows computation is done
in real time. There are tens of thousand of contracts
awaiting approval each hour. However, it is not only
approval or disapproval of contracts that are in the
scope of his responsibilities. Markets entities need
strong hints in order to modify a disapproved con-
tract, and as well, they need to understand trends in
power grid congestion.

Power exchange is an entity that runs the market
itself. It collects orders from consumers, produc-
ers, and brokers and tries to clear them. Congestion
management is an important factor in the process of
market functioning. Congestion changes behavior
of everyone. The once cheap power becomes un-
transportable from the point of production, and con-
sumers are forced to seek alternative power produc-
ers. On the other hand, producers cannot sell their
power to an arbitrary consumer due to line conges-
tion. The power exchange intervenes in this situa-
tion, and designs a set of rules to control conges-
tion. This is mostly done by charging fees for any
additional congestion that a contract may cause. For

an exact and fair congestion fee computation, the
power exchange needs closely cooperate with the
system operator. The system operator has strong
tools to provide the power exchange with all nec-
essary information. He runs a power flow code for
each contract clearing. The system operator also
needs to supply the power exchange with incremen-
tal data about changing line congestion. In other
words, he needs to run a power flow code that com-
putes incremental power flows, and the computation
needs to be doable in real time.

Now, suppose you are a customer willing to buy
some power to satisfy your needs. You submit your
request to the power exchange. The power exchange
finds the cheapest power producers from the point of
view of power price, and congestion fees connected
to the contract approval. The power exchange co-
operates with system operator on contract approval,
and seeks approval. The system operator either ap-
proves or disapproves the contract, and supplies the
power exchange with incremental data about line
congestion. This data is used to compute real-flow
congestion fees, and adjusts the approximate con-
gestion fees computed by power exchange in order
to find the cheapest producer.

ELISIMS is written in ANSI/ISO C/C++ for
UNIX/Linux environment. The tool is capable of
using two kinds of power flow codes. First of the
two is the power flow code developed at the Uni-
versity of Texas at Arlington, which is a well tested
non-linear power flow code. The other one is a lin-
earized version of power flow code developed at the
Los Alamos National Laboratory. Due to the ne-
cessity to start the simulation from zero loads and
power generation (i.e. black start), we found the lin-
earized version easier to use. The computational er-
ror of the linearized version is, in the case of electric
power market, acceptable.

We note that running power flow code of any kind is
the most computational time consuming procedure
in our simulation. It can consume 85–95% of used
processor time. In our case the used hardware was a
PC based on an Intel Pentium III 500 MHz processor
and 256MB of memory. Running the simulation on
the ERCOT network with the linearized power flow
code took us 2 hrs 12 mins to simulate one real-time
hour4 (i.e. 52 hrs 48 mins to run the whole 24 hrs

4Parameters of the network were: topology = ERCOT, num-
ber of buses = 4,527, size of contracts = 6.2MW, capacity of
branches = ERCOT, demand/power available ratio = 0.86. Num-

market). 88% of this time was spent to run the power
flow code. [5] contains basic results on scalability
of electric power exchanges using linearized power
flow code.

3 Sensitivity matrix

Let us have a power network of n buses, and l lines.
Let q = [q1, ..., qn]T to be an injection vector, and
let limit = [limit1, limit2, ..., limitl] to be a vec-
tor of residual line limits. Residual line limits rep-
resent amount of remaining capacity on each line.

The sensitivity matrix of the underlying system is an
n × l matrix. Let i be an arbitrary bus. Then the i-
th column of the matrix represents the incremental
change on each line caused by injection of a unit
amount of power into the i-th bus.

Let us now assume that there is a contract that needs
to get evaluated with respect to the limits of a power
grid. Let the contract to be a bilateral contract. In
this case the injection vector is going to be a sparse
vector of two entries. One for the generator bus i,
and one for the load bus j. To check against the
limits of the power grid we need to recall columns
i and j from the sensitivity matrix. Let us assign
si and sj to columns i and j, respectively, i.e., si
and sj are now injection sensitivity vectors for bus
i and j. In the case of a bilateral contract (single
generator, single consumer) the following inequality
has to be satisfied to preserve line limits in a power
grid:

q × (si + sj) ≤ limit.

This can be generalized for multilateral contracts.
Let the number of parties in such a contract to be b.
The injection vector q becomes a vector of b non-
zero entries, and the inequality becomes:

q ×
b∑

i=1

si ≤ limit.

The left size of the inequality represents incremen-
tal change of line congestion caused by the b-lateral
contract.

ber of branches for ERCOT is 5,412. Number of contracts neces-
sary to settle one real time hour was approximately 5,700.

Figure 1: Scaling of computation time needed to
compute sensitivity matrices with respect to number
of buses.

4 Experiment

In this section we present results that we got running
ELISIMS with sensitivity matrices.

4.1 Computing sensitivity matrices

In the previous section we gave a definition of sen-
sitivity matrix. Now, we show how to compute sen-
sitivity matrices efficiently on any desktop PC com-
puter. For this purpose we used a linearized version
of power flow code. Hence, we prefer a heuristic
method to a direct analytical method. In our ap-
proach we start with a power network with no power
injection on either generator or consumer side. We
assume a lossless power grid. Now, we sequen-
tially and separately inject 1MW of power into each
bus. We follow the sign convention where generator
injections have positive value, and vice-versa load
buses (consumers) out-flows (consumptions) have
negative values. After injecting 1MW into a given
bus we run the linearized power flow code and ana-
lyze power flows that this injection caused. By do-
ing so for each bus separately we obtain a sensitiv-
ity matrix of dimension n× l, where n is number of
buses and l is number of lines (branches).

We have implemented this algorithm and ran numer-
ous experiments. Our hardware was a PC (Intel III
500MHz, 256MB RAM, Linux). In figure 1 we de-
pict scaling characteristics for computation of sensi-
tivity matrices. We have done this for a random net-
work of 1,000–6,000 buses. We were unable to com-
pute sensitivity matrices for networks with a larger

number of buses on a (single-processor) PC with
limited memory. Nevertheless, this gives a good
idea how much time one will need to compute a
sensitivity matrix. Under random network we un-
derstand a tree graph with random degree (2–5) for
each node and 10% edges (randomly) added among
nodes. This random addition of edges makes the
graph (network) to be a non-tree graph. We have
used this kind of network in our previous paper [5].
It gives a quite conservative image of real power
networks, and all measurable properties fluctuate at
their upper bounds. However, a closer look at real
network unveils that these are almost tree structures
with a tangle of additional lines around bigger con-
glomerations.

One can argue that use of sensitivity matrices can
be very cumbersome because of the need to recom-
pute them at every change of physical parameters of
power network. However, this does not happen so
frequently, and in case of scheduled maintenance the
system operator can get prepared well ahead. Nev-
ertheless, we have designed a distributed method for
computation of sensitivity matrices with much more
favorable speed and scaling characteristics, see [6].
This method gives a possibility to recompute a sen-
sitivity matrix for a power grid of size of ERCOT, or
WSCC within a few minutes. A more serious prob-
lem is the size of memory needed to store sensitiv-
ity matrices. Indeed, if we imagine a huge power
network such as the one in the US with projected
number of customers reaching 150 million this can
be a considerable problem. Fortunately, the num-
ber of lines is going to be relatively stabilized. Use
of local methods for computation and look-up of in-
jection sensitivity vectors can be probably very suc-
cessfully used. At present, we can store a sensitivity
matrix for ERCOT or WSCC on a desktop PC with
a few gigabytes of memory – without exploring a
distributed memory, or other approaches.

4.2 Running time of an electric power ex-
change using sensitivity matrix

In this section, we will present two experiments: the
first one is running an electric power exchange us-
ing a linearized power flow code, and the other one
is running using the underlying sensitivity matrix.
We have taken the first experiment from our previ-
ous paper [5] which discusses approaches using lin-
earized power flow codes in more detail.

To reason about efficiency of sensitivity matrices we

Figure 2: Scaling of an electric power exchange
with respect to number of buses using a linearized
power flow code.

Figure 3: Scaling of an electric power exchange
with respect to number of buses using underlying
sensitivity matrix.

have decided to run a series of simulations. The only
independent variable we use is number of buses, and
the only dependent variable we use is time within
which an electric power exchange clears all con-
tracts for a 24-hour period (single business day). In
Figure 2 we depict this situation with use of a lin-
earized power flow code, and in Figure 3 we do the
same for the sensitivity matrix.

We can clearly see that sensitivity matrices offer a
reasonable speed-up compared to the approach us-
ing linearized power flow code. The networks that
we have used in these experiments are the random
networks described in previous subsection. As we
have already mentioned these represent a quite con-
servative view of real power networks. We have
run this experiment also for ERCOT, the power net-

work of the state of Texas. ERCOT is a network
of with 4,527 buses, and 5,412 power lines. With
a linearized power flow code we were able to run
a single business day in 52 hrs 48 mins, and with
the underlying sensitivity matrix this time shrunk to
mere 30 minutes. This does not come as a surprise
because from previous experiments described in [5]
we know that roughly 88% of computation time is
spent in running power flow code. Cutting down on
time spent in this part of the code one can extremely
speed up the whole clearing process what leads to an
increased reliability of the whole process and eases
up pressure on the system operator.

5 Conclusions

In the paper we have presented an incremental ap-
proach to power flows computation tailored for elec-
tric power exchanges. We have run a series of exper-
iments to be able to reason about efficiency of this
approach. We have found out that using sensitivity
matrices in the process of clearing an electric power
market can lead to a significant speed-up and thus
to improved reliability of the electric grid. In case
of ERCOT, the power network of the state of Texas,
we have managed to cut running time from almost
53 hrs down to 30 minutes. We consider this speed-
up worth of notice and future research.

The weakness of sensitivity matrices stems from the
problem of their storage. They create densely pop-
ulated matrix of injection sensitivity vectors. In the
case we have to deal with 150 million customers the
matrix can be very big, though, the other dimension
which is number of lines will probably stay fixed or
will only slowly increase in the future. We believe
that use of local methods can ease up this problem.
Also, distributed memory storage methods can be
considered. However, in most practical cases, one
will only need to store a network of size of ERCOT
or WSCC what is possible on a single PC with a few
gigabytes of memory.

The advantage of sensitivity matrices is that they can
become public data accessible to anyone connected
to electric power business. They increase informa-
tion flows and can significantly reduce number of
unnecessary contract approval requests submitted to
the system operator. With sensitivity matrices each
entity of power market will be able to evaluate its
own business decisions before they are made, and
the decision helper software will be run on a PC

based computer.

Moreover, this method of power flows computation
is inherently incremental. We consider this feature
to be a big advantage over other methods as it posi-
tively contributes to congestion management.

References

[1] R. Bohn, M. Caramanis and F. Schweppe. Op-
timal Pricing in Electrical Networks Over Space
and Time. Rand J. on Economics, 18(3), 1984.

[2] T. Cormen, C. Leiserson, and R. Rivest. Intro-
duction to Algorithms. MIT Press, Cambridge,
MA, 1990.

[3] L. J. Dowell, M. Drozda, D. B. Henderson, V.
W. Loose, M. V. Marathe, and D. J. Roberts.
Electric Industry Simulation System (ELISIM).
Los Alamos National Laboratory, Technical Rep.
No. LA-UR-00-1572.

[4] L. J. Dowell, M. Drozda, D. B. Henderson, V.
W. Loose, M. V. Marathe, and D. J. Roberts.
ELISIMS: Comprehensive Detailed Simulation of
the Electric Power Industry. Los Alamos Na-
tional Laboratory, Technical Rep. No. LA-UR-
98-1739.

[5] L. J. Dowell, M. Drozda, D. B. Henderson, V.
W. Loose, M. V. Marathe, D. J. Roberts. Scala-
bility of ELISIMS: Comprehensive detailed simu-
lation of the electric power industry. IEEE SMC
2000 Conference, Nashville, Tennessee, October
8-11, 2000.

[6] L. Jonathan Dowell, Douglas J. Roberts, Dale
B. Henderson. On Solving Nearly-Singular,
Sparse Systems of Linear Equations: Diakoptics
Techniques for Parallel Computing. Los Alamos
National Laboratory, Technical Rep. No. LA-
UR-00-2175.

[7] W. Hogan. Contract networks for electric power
transmission. J. Regulatory Economics, pp. 211-
242, 1992.

[8] W. Hogan. Flowgate Rights and Wrongs.
ksghome.harvard.edu/∼.whogan.cbg.ksg/

[9] S. Pissanetsky. Sparse matrix technology. Aca-
demic Press, London, 1984.

[10] F. A. Wolak An Empirical Analysis of
the Impact of Hedge Contracts on Bidding
Behavior in a Competitive Electricity Market.
www.stanford.edu/∼wolak/

[11] F. F. Wu, and P. Varaiya. Coordinated
Multilateral Trades for Electric Power
Networks: Theory and Implementation.
www.path.berkeley.edu/∼varaiya/power.html

[12] The Changing Structure of the Electric Power
Industry: Selected Issues. DOE 0562(98), En-
ergy Information Administration, US Depart-
ment of Energy, Washington, D.C. 1998.

