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Abstract— We investigate the influence of the network traffic
payload, using 50 concurrent connections, with a Poisson dis-
tributed packet injection model, on the detection performance of
our Artificial Immune System (AIS). We compare the detection
performance to priorly gained results which were based on a
smaller scenario. We conclude that the Poisson traffic model
had again no negative impact on the detection performance. We
also conclude that a higher network payload has no negative
impact on the detection performance. Additionally a statistically
significant difference in the detection performance between CBR
and Poisson could be observed for a high network payload.

Index Terms—Artificial Immune Systems, Detection Perfor-
mance, Wireless Sensor Networks

I. I NTRODUCTION

The objective of wireless sensor networks (WSN) is to
transfer sensor readings to one or more base stations (de-
pending on the current task and application scenario), in order
to be stored and processed. WSN typically consist of energy
constrained devices which normally have limited computa-
tional capabilities and memory constraints. It is crucial that
the application is aware of these limitations since each node
has to fulfill several tasks during its operation. The additional
usage of strong software-based cryptography is therefore not
feasible. New generations of sensor node hardware however
are equipped with IEEE 802.15.4 communication radios which
support hardware based AES-128 cryptography. This link
based encryption offers protection from alien nodes tryingto
gain access to a deployed network. The usage of link based
cryptography alone without any additional security mecha-
nisms however is not enough to prevent attacks on sensor
networks. Unfortunately current sensors are not tamper proof
(though in many cases they are weather resistant). An attacker
is therefore still able to compromise a sensor node, being able
to capture the current encryption keys. With knowledge of the
encryption keys an intruder may participate in the network and
start attacks to the network without ever being detected.

Misbehavior in wireless ad hoc and sensor networks can
take upon different forms: packet dropping, modification of
data structures important for routing, modification of pack-
ets, skewing of the network’s topology or creating fictitious
nodes; see [5] for a more complete list. The reason for
nodes (possibly fully controlled by an attacker) to execute
any form of misbehavior can range from the desire to save

battery power to making a given wireless sensor network
non-functional. Malfunction can also be considered a type of
unwanted behavior.

Two kinds of misbehaving nodes participating in an ad hoc
network are distinguishable from each other, namely selfish
and malicious nodes. The latter nodes attack the network in
some way in order to disturb its normal operation; such ways
of attacking may include network flooding, manipulation of
forwarded packets or simply the denial of packet forwarding.
Selfish nodes are different in that they always act just for
their convenience while not interested in harming the network.
While selfish nodes may decide not to forward packets just
like malicious nodes do, they just do so in order to save
energy for their own communications (as opposed to malicious
nodes). Of course, the effect of denial of packet forwarding
is the same in both cases, namely, the QoS parameters of
the ad hoc network are likely to deteriorate. However, selfish
nodes will experience this effect having an impact on their own
performance; consequently, they will try to avoid it since they
act for their very own convenience. In other words, while there
is not any chance to turn malicious nodes into non-malicious
nodes, selfish nodes are willing to act "fairly" in terms of the
network if this is in their own interest.

In our previous paper [3] we investigated the impact of
Poisson and constant bit rate (CBR) traffic models using a
small scenario with10 randomly chosen connections. We
believe that the Poisson distribution is a suitable distribution
to model the occurrence of sensor events as many tasks
for WSN assume monitoring functions, hence to observe
such events as the arrival of animals on a clearance or the
number of raindrops on a vineyard. Additionally AIS should
be capable of fulfilling its classification task independent
from the current traffic model. The impact of different traffic
models on the detection performance should therefore be
considered and examined. In our previous paper we concluded
that the detection performance, in terms of detection rate,
was not significantly different between Poisson and CBR. We,
however, noticed significant differences in the rate of false
positives. Therefore, our goal was to investigate whether the
scenario was possibly too small and whether this effect extends
to a bigger scenario. We repeated the experiments using50
randomly chosen connections. We discuss the results of these



experiments in the following sections.
This document is organized as follows. First, we give a short

introduction to artificial immune systems. Second, we describe
our experimental setup. Third, the results are presented and,
finally, we summarize our conclusions and point out possible
directions of future research.

II. A RTIFICIAL IMMUNE SYSTEMS

An Artificial Immune System (AIS) is a bio-inspired clas-
sification system which is derived from the Human Immune
System (HIS). As several methods, terms and descriptions
have been adopted from it, we first want to define the most
relevant ones:

A geneis defined by a characteristic based on data or control
traffic forwarded by a node or in the node’s neighborhood.
For example, the number of attempts to acquire the wireless
medium through contention resolution or the number of data
packets forwarded can be considered a gene.
An antigen is an observation within a time window for a
set of genes which can either be interpreted asself-antigen
or non-self-antigen. While the first interpretation describes
observations which belong to the normal operation (hence
belonging to the ”self set”) of the network, the latter one
describes unknown or malicious behavior of the network.
A detector is produced by a learning algorithm and only
matches against non-self antigens. A commonly used method
to match antigens with detectors, when the bit-string represen-
tation is assumed, is ther-contiguous bits matching rule.

Definition: Given two bit-stringsa andb with |a| = l, r ≤
|b| ≤ l, a r-contiguous bits matching is true if a positioni
exists after which the substringsai, . . . , ar andbi, . . . , br are
identical.

AIS are one of the most recent approaches in computational
intelligence. They provide efficient and robust information pro-
cessing capabilities. They can learn, adapt previously learned
information and perform pattern recognition in a distributed
way.

An important design issue of AIS is the implementation and
translation of the HIS functionality. In the context of wireless
networks, the very basic question is whether the HIS should
be mapped to a single wireless device or to the whole network.
This means that either each wireless device has to mimic the
specific mechanisms of the HIS or these tasks get distributed
over the whole network.

Phases of a simple Artificial Immune System can be divided
into: a learning phase and a detection phase. During the
learning phase detectors are produced (by anegative selection
process). These detectors will be used later in the detection
phase to discover misbehavior indicators. The goal of negative
selection is in the case of AIS to produce only detectors
that are able to identify behavior that is unusual or directly
damaging to the network. For this purpose it is necessary
to observe the network for some period of time and decide
what constitutes the “normal” (usual) behavior. This normal
behavior then gets represented as bit-strings; usually there is

one bit-string computed per window, where a window is a
shorter period of time in which it is expected that some or
many features of the underlying network become observable.
A set of bit-strings that encode normal behavior is called the
set of self strings. Then, a random bit-string gets generated
and is compared against the set of self strings. If the randomly
generated bit-string matches anything in the set of self strings,
it is deleted. Otherwise, the random bit-string becomes a
detector.

Testing a network on unusual behavior is similar. In each
window, a bit-string, that encodes observable behavior of the
network, gets created. This bit-string is matched against the
set of detectors. If a match exists, then a node (or a group of
nodes) has been tested positive on previously unseen behavior.
It is up to the designer of the AIS to decide, whether after a
match an action should be taken, or whether some statistical
analysis on positive tests will be undertaken.

There are several enhancements which allow adaptive learn-
ing, thus avoiding the necessity of an intensive learning phase.
See [9], [1], [2], [3] for more information on the different
mechanisms of AIS and their applicability to intrusion and
misbehavior detection.

III. E XPERIMENTAL SETUP

We used the same bit string representation as in [1], [2],
[3] for self, non-self and detectors and also used ther-
contiguous bits matching rule. Detectors were produced by
using the negative-selection approach. We used two scenarios
with 50 randomly chosen connections. The first scenario used
the CBR, the second scenario the Poisson injection model.
In each scenario we ensured that the average hop count
distance between two nodes was about7 hops. This number
of intermediate nodes was chosen as a tradeoff between a fast
simulation and a reasonable number of participating nodes in
the routing process.

A. Scenario description

For both scenarios the observed network traffic was evalu-
ated according to the described AIS approach. We captured for
every transmitted packet the IP header type (UDP or DSR),
the MAC frame type (RTS, CTS, DATA or ACK), the current
simulation time, the node address, the next hop address, the
global packet source, the global packet destination and the
packet size. The measured values were used to compute the
necessary gene values and their representations as described
below in section III-D Similar to our previous experiments,
each scenario was simulated using Glomosim 2.03 [15] with
20 different seeds for the Glomosim random number generator.
We distributed the simulation runs over30 Linux based PCs.

We used the same parameters and settings for our simula-
tions as described in [1], [2], [3], except for the number of
connections being increased from10 to 50:

• Negative selection algorithm: random generation and
testing. Implemented in C++, compiled with GNU g++
v4.0 with -O3 option.

• Input parameters:
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Fig. 1. (a) Topology of our 1,718-node network with 100m radio radius. (b) Measured forwarding path of the 10 connections, (c) Measured forwarding path
of the 50 connections for a single simulation run without misbehavior; connections shown with all alternative forwarding routes, if they exist.

1) r-contiguous bits matching rule withr = 10.
2) Encoding: 5 genes each10 bits long =50 bits.
3) Number of detectors{500, 1000, 2000}.
4) Exposed misbehavior levels{10%, 30%, 50%}
5) Observation-Window size500 seconds;28 complete

windows over 4-hours simulation time.

• CBR Injection rate: 1 packet/second.14400 packets per
connection were injected. Packet size was512 bytes.

• Poisson Injection rate: λ = 1.0, meanArrivalExpecta-
tion = 1 packet/second. Packet size was512 bytes.

• Performance measures:detection rate, false positives,
data traffic rate at nodes; values were produced per
simulation run and compared as arithmetic average. We
computed the95% confidence interval over all simula-
tions for each misbehavior probability and false positives
rate.

• MAC protocol : IEEE 802.11b DCF.
• Routing protocol: Dynamic Source Routing (DSR).
• Other parameters: (i) Propagation path-loss model: two

ray (ii) Channel frequency: 2.4 GHz (iii) Topography:
Line-of-sight (iv) Radio type: Accnoise (v) Network
protocol: IPv4 (vi) Connection type: UDP.

B. Network Topology

The network topology was the same as in [1], consisting of
1718 nodes placed in a3000 m× 3000 m square plane. Each
node was set to have a radio radius of100m. We made no
restrictions to the graph connectivity, thus allowing isolated
subgraphs.

C. Node Misbehavior

As misbehavior we used a simple probabilistic packet
dropping attack, as described in [1] with a10, 30 and 50%
dropping probability. We excluded sink and source nodes from
misbehavior.236 of our 1718 nodes were chosen (randomly,
but equally distributed in scenario area) to be malicious.

D. Artificial Immune System - Details

In our experiments we use five different genes. They cover
the two most important OSI-layers for data transmission in
sensor networks, namely the link layer and the network layer.
They cover a good range of traffic properties which allow
the AIS to detect misbehavior. As sensor network applications
in general have to deal with many hardware limitations and
therefore only the most necessary OSI layers are implemented
to ensure communication. Layers beyond the networking layer
are therefore supposed to be rarely used.

MAC Layer Genes:
#1 Ratio of complete MAC layer handshakes between two

communicating nodessi andsi+1 and the RTS packets
sent bysi to si+1. If there is no traffic between two
nodes this ratio is set to∞ (a large number). This ratio
is averaged over a time period. A complete handshake is
defined as a completed sequence of RTS, CTS, DATA,
ACK packets betweensi andsi+1.

#2 Ratio of data packets sent fromsi to si+1 and then
subsequently forwarded tosi+2. If there is no traffic
between two nodes this ratio is set to∞ (a large
number). This ratio is computed bysi in promiscuous
mode. This ratio is also averaged over a time period.
This gene was adapted from the watchdog idea in [12].

#3 Time delay that a data packet spends atsi+1 before
being forwarded tosi+2. The time delay is observed by
si in promiscuous mode. If there is no traffic between
two nodes the time delay is set to zero. This measure is
averaged over a time period. This gene is a quantitative
extension of the previous gene.

Routing Layer Genes:
#4 The same ratio as in #2 but computed separately for

RERR routing packets.
#5 The same delay as in #3 but computed separately for

RERR routing packets.



Each gene was encoded using an interval representation
of size 10 which was adopted from [7]. The corresponding
interval was marked by a single1 within the 10 bit sequence
(from the ten bits only one was set). Antigens were produced
by the concatenation of all genes and checked against the
detector set; the comparison was interrupted when the antigen
matched a detector.

IV. EXPERIMENT RESULTS

To detect misbehavior we need to compare all computed
detectors with every observed non-self antigen. In our exper-
iments a500 second time window was used to sample node
traffic and to generate one antigen. The resulting number of
time windows for4 hours of simulated time is therefore28
windows per node. In order to avoid outliers in our analysis we
defined a detection threshold: at least14 antigens (produced
in 14 different time windows) had to match a detector to mark
a node as misbehaving.

A packet threshold for each node was set as the detection
requires that at least a certain number of packets has
been forwarded by a node during normal and misbehavior
operation. If a node lacks packets to forward in the learning
phase, the AIS’s ability to learn is limited. Similarly, if a
node lacks packets to forward during the detection phase and
at the same time wants to execute misbehavior, the impact
of misbehavior is weakened. As a consequence of these
limitations we performed our evaluation using four different
packet threshold values (500, 1000, 2000 and 4000) and
considered only those nodes which were above the given
thresholds. We used the arithmetic average over all simulation
runs to calculate the detection and false positives rate. For each
misbehavior level we computed for the detection and false
positives rate the appropriate95% confidence interval (ci95%).

Definition: The detection rateis defined asdr = nd

nm
,

where nm = the number of misbehaving nodes to detect,
and nd = the number of correctly detected nodes. The
number of misbehaving nodesnm consists of all misbehavior
nodes that were above the packet threshold limit during
a simulation run. The number of correctly detected nodes
consists of all misbehaving nodes that where correctly marked
as misbehaving during a simulation run.

Definition: The false positives rateis defined asfpr =
nfp

nd+nfp
, where nfp = the number of incorrectly detected

nodes, andnd = the number of correctly detected nodes. The
number of incorrectly detected nodes consists of all normal
operating nodes (no implemented misbehavior) which show
a different behavior in contrast to its behavior during the
learning phase.

As observed in the experiments with10 connections, we
expected the detection rate to be similar for both models. The
graphs in figure 2 show the average misbehavior detection
results for10 and 50 connections using500 detectors. For
each misbehavior we computed the95% confidence interval

to ensure statistically significant conclusions. The graphs
from the 10 connection scenario (a) and (b) show that both
traffic models are within the confidence intervals of each
other. The appropriate values over all packet thresholds are
for fig. 2 (a) ci95%,mis10%

= [6%; 11%], ci95%,mis30%
=

[13.8%; 23%], ci95%,mis50%
= [14%; 24.5%], for fig. 2 (b)

ci95%,mis10%
= [8%; 21%], ci95%,mis30%

= [13%; 18%],
ci95%,mis50%

= [11%; 15%]. For each traffic model the
misbehavior confidence intervals overlap and hence no
statistically significant differences can be shown. This isin
contrast to the50 connection scenario with500 detectors
(fig. 2 (c) and (d)). Note that the detection results for each
packet dropping probability in both traffic scenarios were
more stable with much smaller confidence intervals. There
the values and confidence intervals do not overlap and we
can show statistical significant differences between the two
traffic models. This indicates that the traffic models have a
significant impact on the detection rate. However, this only
holds for high network payload and thresholds below4000
packets; with higher thresholds the number of detectable
nodes decreases and the AIS detects the remaining nodes with
high accuracy. Hence the significant differences dissappear.
Surprisingly the 10% misbehavior detection rates do not
follow this principle. Here a significant difference can be
observed for all packet thresholds. This behavior is a result of
the reduced impact that the CBR traffic model causes on the
antigen appearance in contrast to the Poisson traffic model,
when having a small misbehavior rate.

These results were all based on a detector set of500
detectors. We also computed the detection performance for a
set of 2000 detectors. Our goal was to examine whether the
detector number has a significant impact on the performance.
In fig. 3 (a) and (b) the results using10 connections are shown.
No significant differences between the two experiments can
be observed, except for the packet threshold of4000.
This, however, is the result of our detection performance
computation. If no misbehaving node in a simulation run is
above the threshold the run is excluded from the computation
and hence the impact of the remaining detection results is
increased. For figures (a) and (c) the confidence intervals
overlap for each misbehavior too. Note that this overlapping
is caused by larger confidence intervals in the10 connections
example. Looking at the Poisson model experiments we can
observe that an increase of detectors had also no significant
positive impact on the detection performance. We therefore
conclude that a higher detector number does not necessarily
result in a better detection performance. The graphs in figure
3 (c) and (d) show the same tendencies as in figure 2 (c) and
(d). Again the10% misbehavior graph shows a significant
difference between CBR and Poisson traffic, while the other
misbehavior graphs show similar tendencies.

We note that increasing the number of detectors in a
scenario with packet dropping as misbehavior has a low
impact on the detection performance of our AIS. This is
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Fig. 2. Detection rate (10 connections) for CBR (a) and Poisson (b); Detection rate (50 connections) for CBR (c) and Poisson (d) The number of detectors
was500.

independent from the current network payload. As artificial
immune systems should be used within memory constrained
systems, having similar results with only a fraction of the
number of detectors is a valuable observation.

Figures 4 (a) - (d) showing the false positives rates for both
connection scenarios indicate that with an increasing network
payload the number of false positives is getting smaller.
In order to verify whether the reduced rate was due to a
lower number of detected false positives or due to a higher
number of detectable misbehaving nodes, the mean number
of detectable nodes for10 and 50 connections, as well as
the number of false positives were computed. We conclude
that the false positives rate seems decreased for particular
misbehavior scenarios, which is caused by an increase of
detectable nodes. Thus a higher network payload with more
nodes involved in network traffic has a positive impact
on our performance measures, see fig. 4 (a) and (c), but
does not significantly reduce the real number of false positives.

Nonetheless some oddities could be observed in figure 4.
First the confidence intervals for the false positives show

great differences. Values over all packet thresholds for fig-
ure 4 a) areci95%,mis10%

= [8%; 14%], ci95%,mis30%
=

[12.4%; 21%], ci95%,mis50%
= [9%; 19%], for figure 4 b)

ci95%,mis10%
= [5%; 8%], ci95%,mis30%

= [2.4%; 4%],
ci95%,mis50%

= [4.5%; 6.3%]. The huge gap between the false
positives rates of the Poisson and CBR model is basically
a result of the CBR antigen appearance. The Poisson model
offers a higher variance of self-antigens and hence a better
discrimination between self and non-self. Another oddity is
shown in 4 (c). While the number of false positives for the
30% and50% misbehavior are drastically reduced, the number
for the10% misbehavior is almost identical. At the same time
the detection rate for the10 connection scenario is higher
than in the50 connection scenario. We will study our AIS
logfiles in order to find the reason for this unexpected effect.
We however assume that again the antigen similarity of the
CBR traffic could be responsible for this effect.

V. AIS IN AD-HOC NETWORKS - RELATED WORK

In [7] and [8] Sarafijanovíc and Le Boudec introduced an
AIS based misbehavior detection system for ad hoc wireless
networks. They used Glomosim for implementing basic
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Fig. 3. Detection rate (10 connections) for CBR (a) and Poisson (b); Detection rate (50 connections) for CBR (c) and Poisson (d). The number of detectors
was2000.

features of AIS. In their experiments, bit-string representation
was applied, negative selection was used as a basis for
producing detectors. Additionally, a co-stimulation in the
form of a danger signal was used in order to inform nodes
on a forwarding path about misbehavior, thus propagating
information about misbehaving nodes around the network.
Their setup was an area of800× 600m with 40 mobile nodes
(speed1 m/s) of which 5-20 are misbehaving; the routing
protocol was DSR. Four genes were used to capture local
behavior at the network layer. Additionally, a co-stimulation
in the form of a danger signal [9] was used in order to
inform nodes on a forwarding path about misbehavior, thus
propagating information about misbehaving nodes around the
network. Their observed detection rate was about 55%.

Aickelin et al. have been working on artificial immune
systems since 2003 in an interdisciplinary project called
danger theory. In [9] and [6] they presented links between
intrusion detection systems and artificial immune systems,
and a system based on the functionality of dendritic cells.
They also introduced a danger signal approach allowing

nodes to judge the misbehavior information and presented
work on adaptive learning mechanisms.

Kim and Bentley [11] discuss a network intrusion system
that aims at detecting misbehavior by capturing TCP
packet headers. They report that their AIS is unsuitable for
detecting anomalies in communication networks. This result
is questioned in [10] where it is stated that this is due to the
choice of problem representation and due to the choice of
matching thresholdr for r-contiguous bits matching. Kim
and Bentley also present in [4] a detection system based on
the Dendritic Cell Algorithm [13], [6]. Although the TCP
approach does not apply to wireless ad hoc (sensor) networks,
the methods used to detect misbehavior can be adapted to be
used in ad hoc sensor networks.

In [14] the Hofmeyr and Forrest describe an AIS able
to detect anomalies at the transport layer of the OSI
protocol stack; onlywired TCP/IP networks are considered.
Their experiments were done on a pool of computers.
Bit-string representation and ther-contiguous bits matching
rule was used. Negative selection was used for producing
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Fig. 4. False positives (10 connections) for CBR (a) and Poisson (b); False positives (50 connections) for (c) CBR and (d)Poisson. The number of detectors
was2000.

detectors. They also employed a flavor of positive selection
in which useful detectors (that match a pathogen) are
upgraded to memory detectors and unuseful ones get deleted;
memory detectors have an increased lifetime compared to
other detectors. Self is defined as normal pairwise TCP
connections. Each detector is represented as a 49-bit string.
The pattern matching is based on r-contiguous bits with a
fixed r = 12.

VI. CONCLUSIONS ANDFUTURE WORK

In this document we investigated the influence of the
network payload given by50 concurrent connections and
the impact of two packet injection models on our AIS. We
observed that for each traffic model alone the network payload
had no significant impact on the detection performance. In
the 10 connection examples both models showed a similar
detection performance, which is supported by the overlapping
95% confidence intervals. In the50 connection experiments
differences could be observed between the two models. This
indicates that the traffic models have to some extend an
impact on the detection rate. This impact is independent from

the number of detectors used by the AIS. We conclude that
packet dropping when using CBR traffic does not cause the
same impact on the antigen appearance as together with the
Poisson traffic model. In contrast to our hypothesis from [3]
that the impact of the two models should be similar on the
detection performance, the Poisson model allows a better
detection performance when combined with a high network
payload. Finally we would like to mention that both models
allow a decent detection rate of at least60% and a false
positives rate below30% for misbehavior levels above30%.

We only investigated traffic models with permanent data
flow which cannot always be expected to occur in ad-hoc
sensor networks. Our next task is therefore to investigate the
influence of more irregular traffic behavior with random traffic
bursts, created by random events throughout the network. This
will give us an insight on the artificial immune systems capa-
bility to deal with irregular traffic patterns and the resulting
detection performance. Also the influence of adaptive learning
on the detection performance and the impact of different traffic
models on the learning process have to be investigated.
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