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Abstract— We investigate the influence of the network traffic battery power to making a given wireless sensor network
payload, using 50 concurrent connections, with a Poisson dis- non-functional. Malfunction can also be considered a type o
tributed packet injection model, on the detection performance of unwanted behavior

our Artificial Immune Systgm (AIS). We compare the detection Two kinds of misbehavi d ticipating | dh
performance to priorly gained results which were based on a WO Kinds of misbehaving nodes participating in an ad hoc
smaller scenario. We conclude that the Poisson traffic model Network are distinguishable from each other, namely selfish
had again no negative impact on the detection performance. & and malicious nodes. The latter nodes attack the network in
also conclude that a higher network payload has no negative some way in order to disturb its normal operation; such ways
impact on the detection performance. Additionally a statisically ¢ attacking may include network flooding, manipulation of
significant difference in the detection performance betwee CBR - . .
and Poisson could be observed for a high network payload. forwarded packets or S|mply_the denial of packet forvv_ardlng
Index Terms—Artificial Immune Systems, Detection Perfor- S€lfish nodes are different in that they always act just for
mance, Wireless Sensor Networks the|_r convenience while not mtgrested in harming the nekwp
While selfish nodes may decide not to forward packets just
|. INTRODUCTION like malicious nodes do, they just do so in order to save
The objective of wireless sensor networks (WSN) is tenergy for their own communications (as opposed to malgiou
transfer sensor readings to one or more base stations (dedes). Of course, the effect of denial of packet forwarding
pending on the current task and application scenario),deror is the same in both cases, namely, the QoS parameters of
to be stored and processed. WSN typically consist of enertpe ad hoc network are likely to deteriorate. However, delfis
constrained devices which normally have limited computaodes will experience this effect having an impact on thein o
tional capabilities and memory constraints. It is cructatt performance; consequently, they will try to avoid it sinbeyt
the application is aware of these limitations since eachenodct for their very own convenience. In other words, whileréhe
has to fulfill several tasks during its operation. The addil is not any chance to turn malicious nodes into non-malicious
usage of strong software-based cryptography is therefore nodes, selfish nodes are willing to act "fairly” in terms oé th
feasible. New generations of sensor node hardware howeretwork if this is in their own interest.
are equipped with IEEE 802.15.4 communication radios whichIn our previous paper [3] we investigated the impact of
support hardware based AES-128 cryptography. This lifkoisson and constant bit rate (CBR) traffic models using a
based encryption offers protection from alien nodes trntimg small scenario with10 randomly chosen connections. We
gain access to a deployed network. The usage of link badmslieve that the Poisson distribution is a suitable digtitn
cryptography alone without any additional security mech#& model the occurrence of sensor events as many tasks
nisms however is not enough to prevent attacks on sensor WSN assume monitoring functions, hence to observe
networks. Unfortunately current sensors are not tampesfpresuch events as the arrival of animals on a clearance or the
(though in many cases they are weather resistant). An &tackumber of raindrops on a vineyard. Additionally AIS should
is therefore still able to compromise a sensor node, beitey abe capable of fulfilling its classification task independent
to capture the current encryption keys. With knowledge ef tHrom the current traffic model. The impact of different traffi
encryption keys an intruder may participate in the netwartt a models on the detection performance should therefore be
start attacks to the network without ever being detected. considered and examined. In our previous paper we concluded
Misbehavior in wireless ad hoc and sensor networks c#mt the detection performance, in terms of detection rate,
take upon different forms: packet dropping, modification ofias not significantly different between Poisson and CBR. We,
data structures important for routing, modification of packowever, noticed significant differences in the rate ofdals
ets, skewing of the network’s topology or creating fictisoupositives. Therefore, our goal was to investigate whether t
nodes; see [5] for a more complete list. The reason fecenario was possibly too small and whether this effechelste
nodes (possibly fully controlled by an attacker) to execute a bigger scenario. We repeated the experiments using
any form of misbehavior can range from the desire to sav@andomly chosen connections. We discuss the results of thes



experiments in the following sections. one bit-string computed per window, where a window is a
This document is organized as follows. First, we give a shahorter period of time in which it is expected that some or
introduction to artificial immune systems. Second, we dbscr many features of the underlying network become observable.
our experimental setup. Third, the results are presentdd aA set of bit-strings that encode normal behavior is callesl th
finally, we summarize our conclusions and point out possibéet of self strings. Then, a random bit-string gets gendrate

directions of future research. and is compared against the set of self strings. If the rahgom
generated bit-string matches anything in the set of setfgstr
Il. ARTIFICIAL IMMUNE SYSTEMS it is deleted. Otherwise, the random bit-string becomes a

An Artificial Immune System (AIS) is a bio-inspired clas-detector.
sification system which is derived from the Human Immune Testing a network on unusual behavior is similar. In each
System (HIS). As several methods, terms and description#dow, a bit-string, that encodes observable behaviohef t
have been adopted from it, we first want to define the moetwork, gets created. This bit-string is matched agaimst t
relevant ones: set of detectors. If a match exists, then a node (or a group of

A geneis defined by a characteristic based on data or conttrb?_des) has been tgsted positive on previo.usly unseen lpehavi
traffic forwarded by a node or in the node’s neighborhoog. is up to the designer of the AIS to decide, whether after a

For example, the number of attempts to acquire the wirelé?é"‘mh an action should be taken, or whether some statistical

medium through contention resolution or the number of da@alr?/ms on posmvel tes;s will be underz]r-tz;kelr;. dative |
packets forwarded can be considered a gene. There are several enhancements which allow adaptive learn-

An antigenis an observation within a time window for aing, thus avoiding the necessity of an intensive learnirgsph

set of genes which can either be interpretedsel-antigen See [9]’_ [1]. [2], [3] for more inforr_nati(_)_n on t_he di_ﬁerent

or non-self-antigen While the first interpretation describesm,e(:h‘rjm's,ms of AI,S and their applicability to intrusion and
observations which belong to the normal operation (henB¥SPehavior detection.

belonging to the "self set”) of the network, the latter one 1. EXPERIMENTAL SETUP

describes unknown or malicious behavior of the network.

A detectoris produced by a learning algorithm and onl
matches against non-self antigens. A commonly used met
to match antigens with detectors, when the bit-string regme

tation is assumed, is thecontiguous bits matching rule

We used the same bit string representation as in [1], [2],
g for self, non-self and detectors and also used the
contiguous bits matching rule. Detectors were produced by
using the negative-selection approach. We used two sosnari
o . e ) with 50 randomly chosen connections. The first scenario used

Definition: Given two bit-strings: andb with |a| =1, » < {he CBR, the second scenario the Poisson injection model.
[b| < I, ar-contiguous bits matching is true if a positian |, each scenario we ensured that the average hop count
exists after which the substrings, ..., a, andb;,...,b- are  gistance between two nodes was abdutops. This number
identical. of intermediate nodes was chosen as a tradeoff between a fast

AIS are one of the most recent approaches in computatiosahulation and a reasonable number of participating nodes i
intelligence. They provide efficient and robust informatfwo- the routing process.
cessing capabilities. They can learn, adapt previousknézh . -
information and perform pattern recognition in a distrémlit A. Scenario description
way. For both scenarios the observed network traffic was evalu-

An important design issue of AlS is the implementation angfed according to the described AIS approach. We captured fo
translation of the HIS functionality. In the context of wiges €very transmitted packet the IP header type (UDP or DSR),
networks, the very basic question is whether the HIS shoufte MAC frame type (RTS, CTS, DATA or ACK), the current
be mapped to a single wireless device or to the whole netwosknulation time, the node address, the next hop address, the
This means that either each wireless device has to mimic @lebal packet source, the global packet destination and the
specific mechanisms of the HIS or these tasks get distributeacket size. The measured values were used to compute the
over the whole network. necessary gene values and their representations as eebscrib

Phases of a simple Artificial Immune System can be dividé¢low in section I1Il-D Similar to our previous experiments,
into: a learning phase and a detection phase. During t&&ch scenario was simulated using Glomosim 2.03 [15] with
learning phase detectors are produced (Imggative selection 20 different seeds for the Glomosim random number generator.
process). These detectors will be used later in the detectiy/e distributed the simulation runs ov&d Linux based PCs.
phase to discover misbehavior indicators. The goal of megat We used the same parameters and settings for our simula-
selection is in the case of AIS to produce only detectof9ns as described in [1], [2], [3], except for the number of
that are able to identify behavior that is unusual or digectconnections being increased fraifi to 50:
damaging to the network. For this purpose it is necessarys Negative selection algorithm:random generation and
to observe the network for some period of time and decide testing. Implemented in C++, compiled with GNU g++
what constitutes the “normal” (usual) behavior. This ndrma  v4.0 with -O3 option.
behavior then gets represented as bit-strings; usuallgtise « Input parameters:
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of the 50 connections for a single simulation run without brelsavior; connections shown with all alternative forwagdroutes, if they exist.

1) r-contiguous bits matching rule with = 10.
2) Encoding: 5 genes eadld bits long =50 bits.
3) Number of detector$500, 1000, 2000}.

4) Exposed misbehavior leveld 0%, 30%, 50%}

windows over 4-hours simulation time.

« CBR Injection rate: 1 packet/second.4400 packets per

connection were injected. Packet size v#a8 bytes.

o Poisson Injection rate: A = 1.0, meanArrivalExpecta-

tion = 1 packet/second. Packet size wal® bytes.

o Performance measures:detection rate, false positives,

D. Artificial Immune System - Details

In

our experiments we use five different genes. They cover

the two most important OSl-layers for data transmission in
5) Observation-Window siz&00 seconds28 complete sensor networks, namely the link layer and the network layer
They cover a good range of traffic properties which allow
the AIS to detect misbehavior. As sensor network applicatio

in general have to deal with many hardware limitations and
therefore only the most necessary OSI layers are implerdente
to ensure communication. Layers beyond the networking laye

data traffic rate at nodes; values were produced per
simulation run and compared as arithmetic average. Weyq
computed thed5% confidence interval over all simula-

tions for each misbehavior probability and false positives

rate.
o MAC protocol: IEEE 802.11b DCF.
o Routing protocol: Dynamic Source Routing (DSR).

o Other parameters: (i) Propagation path-loss model: two
ray (i) Channel frequency: 2.4 GHz (iii) Topography: -
Line-of-sight (iv) Radio type: Accnoise (v) Network

protocol: IPv4 (vi) Connection type: UDP.

B. Network Topology

The network topology was the same as in [1], consisting of
1718 nodes placed in 8000 m x 3000 m square plane. Each #3

node was set to have a radio radius16fm. We made no
restrictions to the graph connectivity, thus allowing &ebl
subgraphs.

C. Node Misbehavior

As misbehavior we used a simple probabilistic packet

dropping attack, as described in [1] with18, 30 and 50%

dropping probability. We excluded sink and source nodem fro
misbehavior236 of our 1718 nodes were chosen (randomly, #5

but equally distributed in scenario area) to be malicious.

#4

are therefore supposed to be rarely used.

MAC Layer Genes:

Ratio of complete MAC layer handshakes between two
communicating nodes; ands;,; and the RTS packets
sent bys; to s;11. If there is no traffic between two
nodes this ratio is set teo (a large number). This ratio

is averaged over a time period. A complete handshake is
defined as a completed sequence of RTS, CTS, DATA,
ACK packets between; ands; .

Ratio of data packets sent from to s;,; and then
subsequently forwarded te; . If there is no traffic
between two nodes this ratio is set ta& (a large
number). This ratio is computed by in promiscuous
mode. This ratio is also averaged over a time period.
This gene was adapted from the watchdog idea in [12].
Time delay that a data packet spendssat; before
being forwarded t®;. . The time delay is observed by
s; in promiscuous mode. If there is no traffic between
two nodes the time delay is set to zero. This measure is
averaged over a time period. This gene is a quantitative
extension of the previous gene.

Routing Layer Genes:
The same ratio as in #2 but computed separately for
RERR routing packets.
The same delay as in #3 but computed separately for
RERR routing packets.



Each gene was encoded using an interval representationensure statistically significant conclusions. The gsaph
of size 10 which was adopted from [7]. The correspondindgrom the 10 connection scenario (a) and (b) show that both
interval was marked by a singlewithin the 10 bit sequence traffic models are within the confidence intervals of each
(from the ten bits only one was set). Antigens were producether. The appropriate values over all packet thresholds ar

by the concatenation of all genes and checked against fbe fig. 2 (a) cigso mis gy = [6%:11%)], Cigs% missgy =

detector set; the comparison was interrupted when theeamtig13.8%; 23%)], cigso, misse,, = [14%;24.5%)], for fig. 2 (b)

matched a detector. Clos% misrer, = |1870521%], Clos missey, = [13%;18%)],
Clos%,missor, = [11%;15%]. For each traffic model the

IV. EXPERIMENT RESULTS X 0 ) X
misbehavior confidence intervals overlap and hence no

To detect misbehavior we need to compare all computsghtistically significant differences can be shown. Thisnis
detectors with every observed non-self antigen. In our EXp@ontrast to the50 connection scenario witt500 detectors
iments a500 second time window was used to sample nodgg. 2 (c) and (d)). Note that the detection results for each
traffic and to generate one antigen. The resulting number @{cket dropping probability in both traffic scenarios were
time windows for4 hours of simulated time is therefo8 more stable with much smaller confidence intervals. There
windows per node. In order to avoid outliers in our analysés Whe values and confidence intervals do not overlap and we
defined a detection threshold: at leadtantigens (produced can show statistical significant differences between the tw
in 14 different time windows) had to match a detector to maraffic models. This indicates that the traffic models have a
a node as misbehaving. significant impact on the detection rate. However, this only

A packet threshold for each node was set as the detectighds for high network payload and thresholds belé®00
requires that at least a certain number of packets hgsckets; with higher thresholds the number of detectable
been forwarded by a node during normal and misbehavigdes decreases and the AIS detects the remaining nodes with
operation. If a node lacks packets to forward in the Iearnirpggh accuracy. Hence the significant differences dissappea
phase, the AIS's ability to learn is limited. Similarly, if agyrprisingly the 10% misbehavior detection rates do not
node lacks packets to forward during the detection phase ggflow this principle. Here a significant difference can be
at the same time wants to execute misbehavior, the imp@gfserved for all packet thresholds. This behavior is a tesul
of misbehavior is weakened. As a consequence of theg@ reduced impact that the CBR traffic model causes on the

limitations we performed our evaluation using four diffete gntigen appearance in contrast to the Poisson traffic model,

considered only those nodes which were above the given
thresholds. We used the arithmetic average over all simoulat  These results were all based on a detector sef0of

runs to calculate the detection and false positives ratee&ch getectors. We also computed the detection performance for a
misbehavior level we computed for the detection and falg@t of2000 detectors. Our goal was to examine whether the
positives rate the appropriad6% confidence intervaldos%).  detector number has a significant impact on the performance.
In fig. 3 (a) and (b) the results using connections are shown.
Definition: The detection rateis defined asd, = 7, No significant differences between the two experiments can
where n,, = the number of misbehaving nodes to deteche opserved, except for the packet threshold 4600.
and nqg = the number of correctly detected nodes. Thenis however, is the result of our detection performance
number of misbehaving nodes,, consists of all mishehavior computation. If no misbehaving node in a simulation run is
nodes that were above the packet threshold limit duriRgyove the threshold the run is excluded from the computation
a simulation run. The number of correctly detected nodggq hence the impact of the remaining detection results is
consists of all misbehaving nodes that where correctly Bthrkincreased. For figures (a) and (c) the confidence intervals

as misbehaving during a simulation run. overlap for each misbehavior too. Note that this overlagpin
o N ) ] is caused by larger confidence intervals in tileconnections
Pfef'n't'o"‘: The false positives ratds defined asfp. = example. Looking at the Poisson model experiments we can
P

watng, Whereng, = the number of incorrectly detectedopserve that an increase of detectors had also no significant
nodes, andi; = the number of correctly detected nodes. Thgositive impact on the detection performance. We therefore
number of incorrectly detected nodes consists of all normgnclude that a higher detector number does not necessarily
operating nodes (no implemented misbehavior) which sh@wsylt in a better detection performance. The graphs indigur
a different behavior in contrast to its behavior during thg (c) and (d) show the same tendencies as in figure 2 (c) and
learning phase. (d). Again the10% misbehavior graph shows a significant
difference between CBR and Poisson traffic, while the other
As observed in the experiments wifl) connections, we misbehavior graphs show similar tendencies.
expected the detection rate to be similar for both models. Th
graphs in figure 2 show the average misbehavior detectionVe note that increasing the number of detectors in a
results for10 and 50 connections using00 detectors. For scenario with packet dropping as misbehavior has a low
each misbehavior we computed th&% confidence interval impact on the detection performance of our AIS. This is



Detection rate for 500 detectors Detection rate for 500 detectors

100 T 100 T T
s 80 S
9 3 : E‘.’ 1 | 1
@ 60 F @ 60 e o T
s | 5 1 |
B 40 | B A0 e R —
g g e
© i © 10% —+—
o 20 2 o L e v SR
50% ---*--- 1 50% ---*---
0 L 0 L
500 1000 2000 4000 500 1000 2000 4000
Packet threshold Packet threshold
(@ (b)
Detection rate for 500 detectors Detection rate for 500 detectors
100 T T 100 T T
g S
[0} [0} 1
s T 60}
g g :,
8 8 40
i) L
a 3 20
5 | 500 % |
0 | | 0 | |
500 1000 2000 4000 500 1000 2000 4000
Packet threshold Packet threshold
(c) (d)

Fig. 2. Detection rate (10 connections) for CBR (a) and Roigb); Detection rate (50 connections) for CBR (c) and Rwiggl) The number of detectors
was 500.

independent from the current network payload. As artificigireat differences. Values over all packet thresholds for fig

immune systems should be used within memory constrainge 4 a) arecigsy mis,,,, = [870:14%], Cios% missesr =
systems, having similar results with only a fraction of th@l2.4%;21%], cigss miss,, = [9%;19%], for figure 4 b)
number of detectors is a valuable observation. Clos% misie, = [1970;8%], Clos% misses, = [2:4%;4%),

Clos%,misser, = |4-5%;6.3%]. The huge gap between the false
Figures 4 (a) - (d) showing the false positives rates for boffositives rates of the Poisson and CBR model is basically
connection scenarios indicate that with an increasing o’tw a result of the CBR antigen appearance. The Poisson model
payload the number of false positives is getting smallesffers a higher variance of self-antigens and hence a better
In order to verify whether the reduced rate was due to discrimination between self and non-self. Another oddgy i
lower number of detected false positives or due to a highsiown in 4 (c). While the number of false positives for the
number of detectable misbehaving nodes, the mean numB@¥ and50% misbehavior are drastically reduced, the number
of detectable nodes fot0 and 50 connections, as well asfor the 10% misbehavior is almost identical. At the same time
the number of false positives were computed. We conclutlee detection rate for th@0 connection scenario is higher
that the false positives rate seems decreased for particukan in the50 connection scenario. We will study our AIS
misbehavior scenarios, which is caused by an increase ladfiles in order to find the reason for this unexpected effect
detectable nodes. Thus a higher network payload with mdaAe however assume that again the antigen similarity of the
nodes involved in network traffic has a positive impadCBR traffic could be responsible for this effect.
on our performance measures, see fig. 4 (a) and (c), but
does not significantly reduce the real number of false asiti V. AIS IN AD-HOC NETWORKS - RELATED WORK
In [7] and [8] Sarafijanoyi and Le Boudec introduced an
Nonetheless some oddities could be observed in figure 1S based misbehavior detection system for ad hoc wireless
First the confidence intervals for the false positives shometworks. They used Glomosim for implementing basic
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Fig. 3. Detection rate (10 connections) for CBR (a) and Roigb); Detection rate (50 connections) for CBR (c) and Rwig&l). The number of detectors
was 2000.

features of AIS. In their experiments, bit-string repréaon nodes to judge the misbehavior information and presented
was applied, negative selection was used as a basis imrk on adaptive learning mechanisms.
producing detectors. Additionally, a co-stimulation ineth
form of a danger signal was used in order to inform nodesKim and Bentley [11] discuss a network intrusion system
on a forwarding path about misbehavior, thus propagatitigat aims at detecting misbehavior by capturing TCP
information about misbehaving nodes around the netwonkacket headers. They report that their AIS is unsuitable for
Their setup was an area 800 x 600m with 40 mobile nodes detecting anomalies in communication networks. This tesul
(speedl m/s) of which 5-20 are misbehaving; the routingis questioned in [10] where it is stated that this is due to the
protocol was DSR. Four genes were used to capture lochbice of problem representation and due to the choice of
behavior at the network layer. Additionally, a co-stimidat matching threshold- for r-contiguous bits matching. Kim
in the form of a danger signal [9] was used in order tand Bentley also present in [4] a detection system based on
inform nodes on a forwarding path about misbehavior, thtise Dendritic Cell Algorithm [13], [6]. Although the TCP
propagating information about misbehaving nodes arouad thpproach does not apply to wireless ad hoc (sensor) networks
network. Their observed detection rate was about 55%. the methods used to detect misbehavior can be adapted to be
used in ad hoc sensor networks.

Aickelin et al. have been working on artificial immune In [14] the Hofmeyr and Forrest describe an AIS able
systems since 2003 in an interdisciplinary project called detect anomalies at the transport layer of the OSI
danger theory In [9] and [6] they presented links betweemrotocol stack; onlywired TCP/IP networks are considered.
intrusion detection systems and artificial immune systenmiBheir experiments were done on a pool of computers.
and a system based on the functionality of dendritic cellBit-string representation and thecontiguous bits matching
They also introduced a danger signal approach allowimgle was used. Negative selection was used for producing
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Fig. 4. False positives (10 connections) for CBR (a) andd@uigb); False positives (50 connections) for (c) CBR andP@}gson. The number of detectors
was 2000.

detectors. They also employed a flavor of positive selectidime number of detectors used by the AIS. We conclude that
in which useful detectors (that match a pathogen) apacket dropping when using CBR traffic does not cause the
upgraded to memory detectors and unuseful ones get deletaime impact on the antigen appearance as together with the
memory detectors have an increased lifetime compared Roisson traffic model. In contrast to our hypothesis from [3]
other detectors. Self is defined as normal pairwise TQPRat the impact of the two models should be similar on the
connections. Each detector is represented as a 49-bigstridetection performance, the Poisson model allows a better
The pattern matching is based on r-contiguous bits with detection performance when combined with a high network
fixed r = 12. payload. Finally we would like to mention that both models
allow a decent detection rate of at lea#i% and a false

positives rate belov0% for misbehavior levels abov&d%.
VI. CONCLUSIONS ANDFUTURE WORK

In this document we investigated the influence of the
network payload given by0 concurrent connections and We only investigated traffic models with permanent data
the impact of two packet injection models on our AIS. Wéow which cannot always be expected to occur in ad-hoc
observed that for each traffic model alone the network palyloaensor networks. Our next task is therefore to investigate t
had no significant impact on the detection performance. imfluence of more irregular traffic behavior with random fiaf
the 10 connection examples both models showed a similaursts, created by random events throughout the netwoi&. Th
detection performance, which is supported by the overtappiwill give us an insight on the artificial immune systems capa-
95% confidence intervals. In th80 connection experimentsbility to deal with irregular traffic patterns and the resut
differences could be observed between the two models. THistection performance. Also the influence of adaptive iegrn
indicates that the traffic models have to some extend an the detection performance and the impact of differeffi¢cra
impact on the detection rate. This impact is independemh franodels on the learning process have to be investigated.
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