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Abstract— Sensor networks are a flavor of ad hoc wireless net- detailed performance study of AIS with focus on sensor

works with limited computational capabilities. The task toprotect networks. The general conclusions based on building an AlS
such networks against misbehavior is therefore more comptated  {5; sensor networks can be summarized as follows:

as any detection mechanism has to be simple and efficient. We1 Given the randes of inout parameters that we used and
employed mechanisms based on Artificial immune systems (AJS — 9 put p

in order to detect misbehavior. We conclude that AIS based Considering the computational capabilities of currentssen
misbehavior detection offers a decent detection performare at a devices, we conclude that AIS based misbehavior detection
very low computational cost. We show that misbehavior detdion  offers a decent detection rate at a low computational coist; t
when applied at both the MAC and network layers may still not  \5kes it an ideal solution for sensor networks.

be sufficient, instead it will be necessary to extend it to lasrs . . S .
with end-to-end connection information; this would also alow 2. One of the main challenges in designing well performing

for classifying misbehavior by its potential to cause harmThese AIS for sensor networks is the set of “genes”. Genes are
results have a direct impact on the design of AIS for sensor necessary to measure a network’s performance from a node’s

networks and on engineering of sensor networks. viewpoint, must be easy to compute and robust against mis-
behavior. This is similar to observations made in [16].
I. INTRODUCTION AND MOTIVATION 3. Our results suggest that to increase the detection perfor

(sensors) that are able to monitor environmental or physi¢ayers of the OSI protocol stack; this includes also detecti
conditions such as humidity, temperature, motion or noigeerformance with regqrds toa S|mpl|st|c_flavor of m|sb¢haV|
These sensors are suitably spatially distributed in theimofUch as packet dropping. This supports ideas shortly disdus
tored area and are able to communicate with each other. 6erl8d10] where the authors suggest that information avasiatl
networks lack a centralized authority that would contra ththe application layer deserves more attention.
flow of individual data packets, instead data connectioms ca
be established between any sensor in an ad hoc way; when
two sensors are unable to communicate directly, data pmck®t Background
are forwarded by intermediate sensors that serve as routers The Human immune system is a rather complicated mecha-
Due to the lack of a centralized authority sensor networlgsm that is able to protect humans against an amazing set
are vulnerable to miSbehaViOf, malfunction or failure. c8in of extraneous attacks. This System is remarkab|y efﬁcient,
sensors are expected to have limited computational power dfost of the time, in discriminating betweself and non-self
be battery powered, a system that is going to protect thefAtigenst A non-self antigen is anything that can initiate an
has to belightweight Additionally, it has to be adaptive asimmune response; examples are a virus, bacteria, or gplinte
sensor networks are expected to operate autonomously withe opposite to non-self antigens are self antigens; s¢if an
sporadic maintenance, it has to be able to undertake act{@ghs are human organism's own cells.
against misbehaving sensors, possibly isolate them, in anrhe important features of HIS have often a dual nature.
extreme case to alarm a human operator. Therefore classif@ése dual natures include self vs non-self recognitiamatie
intrusion detection approaches, many of which are based\(;gﬁ acquired immunity’ primary VS Secondary response, or
intrusion signatures that must be frequently updated, or gBneral vs specific response. Some immunity mechanisms are
pre-programmed rules that do not offer any self-configarati antigen specific, systemic (not confined to a local area), or

are not suitable for this task. have memory (they are able to launch a stronger response
An example of systems that fulfill the above requirementfext time a specific antigen is encountered).

are Artificial immune systems (AIS). AIS are based on a
mechanism that is present in human bodies, namelythen B. Learning

Human immune system (HISke [8], [15], [2] and references The process of T-cells maturation in thymus is used as

therein. AIS are a part of recent promising advances i inspiration for learning in AIS. The creation of T-cells
Intrusion detection systems.

Motivated by results in [8], [15] we have undertaken a !Self and non-self in short.

Il. ARTIFICIAL IMMUNE SYSTEMS



(detectors) in thymus is a result of a pseudo-random procestiere n(t),e(t) are the set of nodes and edges at time
After a T-cell is created (see Figure 1), it undergoes ta respectively. Nodes correspond to automated sensors (or
censoring process callategative selectianDuring negative mobile users) that wish to communicate with each other. An
selection T-cells that bind self are destroyed. Remaining &dge between two node$ and B is said to exist whemd
cells are introduced into the body. The recognition of noms within the radio transmission range & and vice versa.
self is then done by simply comparing T-cells that survivefhe imposed symmetry of edges is a usual assumption of
negative selection with a suspected non-self. This procesany mainstream protocols. The change in the cardinality of
is depicted in Figure 2. It is possible that the self set metsn(t),e(t) can be caused by switching on/off one of the
incomplete, while a T-cell matures (tolerization period) isensors, failure, malfunction, removal, signal propagmgtiink

the thymus. This leads to producing T-cells that should haweliability and other factors.

been removed from the thymus and can cause an autoimmunBata exchange in a point-to-point (uni-cast) scenariolysua

reaction, i.e. it leads téalse positives proceeds as follows: a user initiated data exchange leads to
route query at the network layer of the OSI stack. A routing
SELF protocol at that layer attempts to find a route to the data

STRINGS exchange destination. This request may result in a path of

non-unit length. This means that a data packet in order to
GENERATE " p— reach the_ destination has to rely on successive forwarding b
RANDOM = MATCH ™ ser intermediate nodes on the path. An example of an on-demand
‘e routing protocol designed specifically for ad hoc networks i
y DSR [9]. Route search in this protocol is started only when
a route to a destination is needed. This is done by flooding
the network by RRE®control packets. The destination node
or an intermediate node that knows a route to the destination
Fig. 1. Detector generat‘ion by random-generate-and-teseps. Only strings will reply with a RREP control packet. This RREP follows
that do not match anything self become detectors. .
the route back to the source node and updates routing tables
at each node that it traverses. A RERR packet is sent to the
connection originator when a node finds out that the next node
on the forwarding path is not replaying. We refer the reader
to [11] for more information on sensor networks.
Movement of nodes can be modeled by means of a move-
DETECTOR U ren eS| oerecren ment r_nodel. A WeII-_known mobility model is thRandom
SET NON-SELF waypoint modelln this model, nodes move from the current
position to a new randomly generated position at a predeter-
Fig. 2. Recognizing non-self is done by matching detectdth suspected mined speed. After reaching the new destination a new random

REJECT

NEW
STRINGS

non-self strings. position is computed. Nodes pause at the current position fo
a time periodt before moving to the new random position.
C. Theoretical Background IV. EXPERIMENTAL SETUP

The generate-and-test approach for producing T-cells (de<The purpose of our experiments is to show that AIS are a
tectors) described above is analyzed in [6]. They assunte t@ble approach for detecting misbehavior in sensor ne¢svor
both self and non-self sets, as well as detectors can be B'[bd@h a Companion paper [7] we have reviewed different types of
as bit-strings of lengthi. Let the size of the self set b¥s, misbehavior at the MAC, network and transport level of the
the probability that a randomly chosen detector and a striggs| protocol stack. We note that solutions to some of these
from the self set match bé,, and the probability that a attacks have been already proposed; these are howeveiicpeci
string from the non-self set is not matched by any detectgy a given attack.

be Pr. Then the time and space complexity of this algorithm we represent self, non-self and detector strings as bit-
for a fixed matching probability?,, is O(#%Ns) strings. The matching rule employed is theontiguous bits
and O(INg), respectively. This algorithm requires that thenatching rule Two bit-strings of equal length match under
number of required candidate detectors is exponenti?lgo the r-contiguous matching rule if there exists a substrihg o
The advantage of this algorithm is its simplicity and goot&ngthr at positionp in each of them and these substrings
experimental results in cases when the number of detectars identical. Detectors are produced by the process shown i
to be produced is fixed and small [15]. A review of otheFigure 1, i.e. by means of negative selection when detectors
approaches to detector computation can be found in [2]. are created randomly and tested against a set of self strings
Definitions of input and output parameterdhe input

I1l. SENSORNETWORKS .
] . ) parameters for our experiments wereparameter for the r-
A sensor network can be defined in graph theoretic frame-

work as follows: a sensor network is a ¥t = (n(t),e(t)) 2RREQ = Route Request, RREP = Route Reply, RERR = Route Error.
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Fig. 3. (a) Topology of our 1,718-node network with 100m cadkdius. (b) Measured forwarding path of the 10 connectionsa single simulation run
without misbehavior; connections shown with all alteveatforwarding routes, if they exist.

1) Negative selection algorithm: random generate and t@glemented in C++, compiled with GNU g++ v4.0 with -O3 optio

2) Input parameters: 1. r-contiguous matching rule with = {7,10, 13,16, 19,22}. 2. Encoding: 5 genes each 10 bits long|=
50 bits. 3. Number of detectors500, 1000, 2000, 4000}. 4. Misbehavior level10, 30,50%} 5. Window size 500 seconds; 28
complete windows over 4-hour simulation time.

3) Performance measuresreal time to compute detectors, number of iterations to adgmgetectors, detection rate, rate of non-valid
detectors, data traffic rate at nodes; their arithmeticapas and 95% confidence intervals.

4) Network topology: Snapshot of movement modeled by random waypoint mobilitgeha.e. it is a static network. There werne
1,718 nodes. The area was a square of 2,90R/850m. The transmission range of transceivers was 100rgnete

5) Number of connections:10 CBR (constant bit rate) connectioM8AC protocol : IEEE 802.11b DCFRouting protocol: DSR.
Other parameters: (i) Propagation path-loss model: two(ifggChannel frequency: 2.4 GHz (iii) Topography: Line-sifyht (iv)
Radio type: Accnoise (v) Network protocol: IPv4 (vi) Contien type: UDP.

6) Injection rate: 1 packet/second. 14,400 packets per connection were édjePacket size was 512 bytes.

7) The number of independent simulation runs for each coatigin of input parameters was 20. The simulation time was ufsha

8) Simulator used: GlomoSim 2.03; hardware used::3Qinux (SUSE 10.0) PC with 2GB RAM and Pentium 4 3GHz microgssor.

Fig. 4. Parameters used in the experiment.

contiguous matching rule, the (desired) number of detsctocomplete, i.e. it does not allow is to recognize a large range
misbehavior level and traffic rate at nodes. Misbehavior wa$ misbehavior activities, in contrary, the idea was to deo
modeled as random packet dropping at selected nodes. a set of a modest size. In the future we plan to undertake
The performance (output) measures were arithmetic averagenore complex simulation experiments with packet traffic
and 95% confidence intervad$qso, of detection rate, number information ranging all over the OSI protocol stack.
of false positives, real time to compute detectors, numlber o The topology of this network was determined by making a
iterations to compute detectors (number of random tried) asnapshot of 1,718 mobile nodes (each with 100m radio radius)
number of non-valid detectors. The detection katés defined moving in a square area of 2,900¢8,950m as prescribed by
as %, wheredns is the number of detected non-self stringghe random waypoint mobility model; see Figure 3(a). The
andns is the total number of non-self strings. A false positivenotivation in using this movement model and then creating
in our definition is a string that is not self but can still be snapshot are the results in our previous paper [5] that
a result of anomaly that is identical with the effects of deals with structural robustness of sensor network. Weechos
misbehavior. A non-valid detector is a candidate detedtat t source and destination pairs for each connection so thataev
matches a self string and must therefore be removed. alternative independent routes exist; the idea was to Henefi
from route repair and route acquisition mechanisms of the

Scenario description: The purpose of this experiment waspsRr routing protocol, so that the added value of AIS based
to capture “self” and “non-self” packet traffic in a syntleeti ,ispehavior detection is obvious.

static sensor network and test whether using an AIS we

are able to recognize non-self, i.e. misbehavior. We only We have used 10 CBR (Constant bit rate) connections. The
considered packet traffic at the MAC and network layer. Thmnnections were chosen so that their length-ishops and

set of genes that represent certain chosen properties kéfpaso that these connections share some common intermediate
traffic in wireless networks was chosen so that a thorouglodes; see Figure 3(b). For each packet received or sent
functionality test of our AIS is possible. The set is noby a node we have captured the following information: IP



header type (UDP, 802.11 or DSR in this case), MAC framdowever, there were only 3-10 nodes with misbehavior and

type (RTS, CTS, DATA, ACK in the case of 802.11), currentvith a statistically significant number of packets for forda

simulation clock, node address, next hop destination addrang in each simulation run.

data packet source and destination address and packet siz8imulation phasesthe experiment was done in four phases.

Let us assume that the routing protocol finds for a connectién 20 independent Glomosim runs were done for one of

the pathss, s1, ..., 8i, Sit1, Si+2, ---, ¢ from the source node {10, 30,50%} misbehavior levels and “normal” traffic with

ss to the destination node;, wheres, # s;. We have used no misbehavior.

the following genesto capture certain aspects of MAC and. Self and non-self antigen computation.

routing layer traffic information: 3. The 20 “normal” traffic runs were used to compute detec-
MAC Layer: tors. Given the 28 windows and 20 runs, the sample size was

#1 Ratio of complete MAC layer handshakes betweedP*28 = 560, i.e. detectors at each node were discriminated
nodess; ands,; and RTS packets sent Byto s;,;. If ~against 560 self antigens.
there is no traffic between two nodes this ratio is set th USing the runs wit(10, 30,50%} misbehavior levels, the
o (a large number). This ratio is averaged over a timfocess shown in Figure 2 was used for detection.
period. A complete handshake is defined as a complefeyperiment was then repeated with differendesired number
sequence of RTS, CTS, DATA, ACK packets between Of detectors and misbehavior level.
ands; 1. The parameters for this experiment are summarized in
#2 Ratio of data packets sent from to s;.; and then Figure 4. The injection rate and packet sizes were chosen in
subsequently forwarded te;,». If there is no traffic order to comply with usual data rates of sensors (e.g. 3pstkb
between two nodes this ratio is set to (a large for Mica2; see [1]). One can consider packet traffic in sensor

number). This ratio is computed by in promiscuous networks be more bursty and less frequent than in our model

This gene was adapted from the watchdog idea in [13jnd their use can vary in the future.
#3 Time delay that a data packet spendssat; before V. RESULTSEVALUATION

being forwarded tx;, 2. The time delay is observed by L . . .
s: in promiscuous mode. If there is no traffic between When considering results presented in this section one

. , . should remember that the computational throughput of senso
two nodes the time delay is set to zero. This measure;is .
. . . . ._lies at max.1% of the used PC3.0n the other hand, it is
averaged over a time period. This gene is a quantitativé . :
. . reasonable to expect that computation of deteBtaridl be
extension of the previous gene.

very infrequent, once per several weeks or months. An Initia

Routing Layer: _ set of detectors can be provided at the first deployment. It is
#4 The same ratio as in #2 but computed separately f9&o reasonable to expect that several sensors will be able t
RERR routing packets. detect a single misbehaving sensor.
#5 The same delay as in #3 but computed separately fofrhe results connected to computation of detectors are shown
RERR routing packets. in Figure 5. In our experiments we have only considered
The above mentioned time period is 500 seconds. the desired number of detectors to be max. 4,000; over this

Encoding of self and non-self antigehd€ach gene value threshold the computational requirements might be too high
was transformed in a 10-bit signature where each bit definfes current sensor devices. Also, each time thgarameter is
an intervat of a gene specific value range. We created setfcremented byl, the number of detectors should double in
and non-self antigen strings by concatenation of the definedler to make these two cases comparable.
genes. Each self and non-self antigen has therefore a sbe of Figure 5(a) shows the real time needed to compute the
bits. The interval representation was chosen in order tidavalesired set of detectors. We can see the real time necessary
carry-bits that make the binary representation less cotmpacincreases proportionally with the desired number of detsct

Constructing the self and non-self se¥e have randomly this complies with the theoretical results presented in [6]
chosen 28 non-overlapping 500-second windows in our Bigure 5(b) shows the percentage of non-valid detectas, i.
hour simulation. In each 500-second window self and noh-seletectors that were found to match a self string (see Figure 1
antigens are computed for each node. This was repeatedT2(s result points to where the optimal operation point of an
times for independent Glomosim runs. AIS might lie with respect to the choice ofparameter and the

Misbehavior modelingMisbehavior is modeled as randomchoice of a fixed number of detectors to compute. We remind
data packet dropping; we have randomly chosen 236 nodke reader that the larger is theparameter the smaller is the
and these were forced to drdp0, 30,50%} of data packets. probability that a detector will match a self string. Themef

overhead connected to choosing thparameter prohibitively

3The non-self antigens are a mixture of self antigens, ntfnasgigens
and antigens that is not possible to classify due to theiilaiity to non-self 5For example a Mica2 sensor is equipped with an Atmel ATmedh &2
antigens. bit processor that has peak throughput 16 MIPS, program mert28kB,
4The interval encoding of genes is adapted from [15]. This waly one storage memory 512kB; the outdoor radio range is app. 15@rmét].
of the 10 bits is set to 1, i.e. there are only 10 possible viduels that it is S|ssues connected with availability of misbehavior-freeiquis for detector
possible to encode in this case. computation are beyond the scope of this paper.
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Fig. 6. Performance of misbehavior detection. Misbehalgwel = {10, 30, 53%. In (a) » = 10, in (b) and (c) the packet threshold was 1000.

small should be consider when designing an AlS. Figure 5(t)at a node had at least 500 packets to forward in both the
shows the total number of generate-and-test tries needed l&arning and misbehavior phases; this number is measured
computation of detector set of a fixed size. over the whole 4-hour simulation period. We conclude that
¥cept for some extremely low threshold values (not shown)
e detection rate stays constant. This figure also shows tha

. . i I I 0,
In our case there is one non-self string computed per a 5 hen misbehavior level was set very low, i.e. 10% the AIS

second window (in general, the window size can be changdgud9led to detect misbehaving nodes. At the 30 and 50%

with respect to the traffic properties). The time complexit isbehaving levels the detection rate stays solid at abbut_?
of misbehavior detection is proportional to the number 5%. The range of the 95% confidence interval of detection

detectors. rate is 3.8-19.8%. This is similar to results in [16]. Thidrme
out that misbehavior detection at the MAC and network layers
When evaluating the detection rate it is important that thgay not be sufficient, instead AIS based misbehavior detecti
number of packets that a node forwards is over a certainithregnouid be extended to OSI protocol layers with end-to-end
old. If a node lacks packets to forward in the misbehaviogsnnection information. This would also allow for classify
free learning phase, his ability to learn is limited. If itk mispenavior by its potential to cause harm as it is suggested
packets to forward and at the same time wishes to execmqg]. It also implicates that watchdog based genes shoatd n

misbehavior, the impact of misbehavior is limited as the®e ape ysed in isolation, and in general, that the choice of genes
no packets to drop. Therefore we only considered nodes Wihs to be very careful.

some minimum forwarding activity. We define a node to be _. . .

detected as misbehaving if it gets flagged in at least 14 out-'gure 6(b) shows the impact efon detection rate. W_hen

of 28 possible windows. This definition is equivalent (undér — {7,10} the AIS.pe.rforms well, forr - 10 the detection
reasonable assumptions) to saying that the time to detectigte decreases. '_rh|s is caused by the inadequate numbers of
is double the size of the window, i.e. 1000 seconds in thiietectors used; in general the number of detectors should
case. In Figure 6(a) we show dependence of detection rafguble when is increased by.

on this packet threshold. Packet threshold of e.g. 500 mean&igure 6(c) shows the number of false positives. We remind

The task of misbehavior detection (see Figure 2) requir
comparison of the computed detectors with a non-self stri



that in our definition false positives are both nodes that dmy possible misbehavior. The choice of genes should impose
not drop any packets and nodes that drop packets due to othérigh degree of sensor network’s survivability definedhes
reasons than misbehavior. capability of a system to fulfill its mission in a timely manne

In a separate experiment we studied whether the 4-hawen in the presence of attacks, failures or accidgs It is
(560 samples) simulation time was enough to capture theerefore of paramount importance that the sensor network’
diversity of the self behavior. This was done by trying toedt mission is clearly defined and achievable under normal oper-
misbehavior in 20 independent misbehavior-free Glomosiating conditions.
runs (different from those used to compute detectors). WeOur intermediate research direction will be to undertake
report that we did not observe a single case of an autoimmuimilar tests as described in this document on Mica2 sen-
reaction. sors [1] and verify viability of AIS based misbehavior de-

VI, RELATED WORK tection in real world settings.
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