
Comparison of User Trajectories with the
Needleman-Wunsch Algorithm

Maroš Čavojský(B) and Martin Drozda

Faculty of Electrical Engineering and Information Technology,
Slovak University of Technology, Bratislava, Slovakia

{maros.cavojsky,martin.drozda}@stuba.sk

Abstract. We show that the Needleman-Wunsch algorithm for sequence
alignment can be efficiently applied to comparing user trajectories, where
user locations are provided by Global positioning system (GPS). We com-
pare our approach based on this algorithm with other approaches such
as the pairwise method and the proximity method. We describe all steps
necessary to apply the Needleman-Wunsch algorithm when comparing
user trajectories. In our experiments we use two different data sets: a
data set that we collected with 455 mobile devices distributed among
our students and the Geolife data set (Microsoft Research Asia). We
conclude that our approach based on the Needleman-Wunsch algorithm
performs better than other approaches, especially, in terms of true nega-
tives, false positives and false negatives, while still offering improvement
in terms of true positives.

Keywords: GPS · Needleman-Wunsch algorithm ·
Sequence alignment · User movement patterns ·
Experimental evaluation

1 Introduction

We investigate whether the Needleman-Wunsch algorithm for sequence align-
ment can perform well for comparison of user trajectories. Comparing user tra-
jectories is relevant when there is a need to group users by visited locations with
sequential dependence. Such a grouping has a wide range of applications such
as navigation, location recommendation, friend recommendation etc.

The Needleman-Wunsch algorithm was published in 1970 [11]. It is one of the
first applications of dynamic programming, where a large problem is divided into
a series of smaller problems to reconstruct a solution to the larger problem. The
Needleman–Wunsch algorithm is still widely used for optimal global alignment,
particularly when the quality of the global alignment is of the utmost importance.

The algorithm takes as input two sequences, score matrix and gap penalty.
The objective is to align these two sequences by matching letters and introducing
gaps, where score with respect to matched letters and penalty for introducing
gaps are computed. Matching only identical letters can be desirable, however,

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

Y. Yin et al. (Eds.): MobiCASE 2019, LNICST 290, pp. 141–154, 2019.

https://doi.org/10.1007/978-3-030-28468-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28468-8_11&domain=pdf
https://doi.org/10.1007/978-3-030-28468-8_11

142 M. Čavojský and M. Drozda

(a) Gap - missing location data (b) Nest - false movement

Fig. 1. Gap and nest.

in bio-informatics score is often set according to mutation probabilities, where
matching certain letters can have a higher score than matching other letters. It
is also often desirable that alignment has few small gaps, therefore penalty for
starting a gap can also be introduced. Let us consider the following sequences:

Sequence 1: G A T T A C A
Sequence 2: G T C G A C G

An alignment for these two sequences, when only identical letters are allowed
to match, can be as follows:

Sequence 1: G - T - - C G A C G
Sequence 2: G A T T A C - A - -

We argue that the Needleman-Wunsch algorithm can be efficiently applied
for aligning user trajectories defined by coordinates received with GPS (Global
Positioning System). When comparing user trajectories, one has to cope with
the following phenomena:

– Gaps arise when acquisition of GPS coordinates is interrupted; such gaps
naturally map to gaps in the sequence alignment problem.

– Nests arise when signal reflection and multi-path propagation negatively
impact GPS signal reception. This phenomenon can be perceived as a random
walk around the user’s real location.

Examples of these two phenomena are shown in Figs. 1(a) and (b). Our ambi-
tion is to show that gaps and nests can be efficiently addressed with algorithms
for sequence alignment, in our case with the Needleman-Wunsch algorithm.

The rest of this document is organized as follow. In Sect. 2 we introduce
the Needleman-Wunsch algorithm, Sect. 3 has relevant definitions necessary for
discussing and introducing our approach and results, in Sect. 4 we review the

Comparison of User Trajectories with the Needleman-Wunsch Algorithm 143

related work, in Sect. 5 we introduce our approach to user trajectory comparison,
in Sect. 6 we present the applied experimental setup, Sect. 7 contains the obtained
results, and finally, in Sect. 8 we conclude and give suggestions for possible future
work.

2 Needleman-Wunsch Algorithm (NWA)

NWA is a variant of string-editing algorithm, where the objective is to maximize
alignment scores along the entire length of two sequences. Let x1, x2, ..., xm and
y1, y2, ..., yn be two sequences, one having m letters and the other n letters. The
scoring schema S defines scores when letters match or mismatch, for example,
S(G,G) = 1 or S(G,T) = −1. In its simplest form, S returns score 1 for identical
letters and −1 for different letters including letter to gap mismatch (gap penalty).
More complex schemes were proposed in order to capture different mutation
probabilities; see e.g. BLOSUM scoring [3].

Having a scoring scheme, we can build a matrix M of size (m + 1) × (n + 1),
where each entry M(i, j) represents the score for optimal alignment of partial
sequences x1, ..., xi and y1, ..., yj . The matrix M needs to be initialized as follows:
M(0, 0) = 0, M(i, 0) = i ∗ gp and M(j, 0) = j ∗ gp, where gp is gap penalty. The
remaining entries of M are filled recursively:

M(i, j) = max

⎧
⎪⎨

⎪⎩

M(i − 1, j − 1) + S(i, j),
M(i − 1, j) + S(i,),
M(i, j − 1) + S(, j),

(1)

where S(i,) and S(, j) is gap penalty and S(i, j) is the score of matching (or
mismatching) at i-th and j-th position of sequences. In order to compute optimal
alignment, we also need to record which of the three considered cases was applied,
i.e. which resulted to maximum value. When computing the optimum alignment
we need to backtrack from M(m,n) in the direction of recorded choices, where
moving up or left means introducing a gap and moving on diagonal means no
gap. NWA complexity is O(mn), therefore this algorithm is also suitable for
computing sequence alignments of considerable length.

3 Definitions

To define a movement of device (user) it is necessary to determine its location at
any point. Therefore, we define position as a location of user using geo-location
coordinates as follows.

Definition 1. Position P is a couple (lat, lon), where

– lat is latitude in decimal degrees (e.g. 48.1518568),
– lon is longitude in decimal degrees (e.g. 17.0711559).

144 M. Čavojský and M. Drozda

Alongside with device position, we also record other relevant information
such as time, accuracy or process of obtaining the position.

Definition 2. Location L is a tuple (P, T ,A), where

– P is position,
– T is time in seconds from 1.1.1970 (UTC),
– A is horizontal accuracy in meters.

According to the Android documentation [2], we define horizontal accuracy A
as a radius with 68% reliability. In other words, if we draw a circle with radius A
and center P, there is 68% probability (one standard deviation) that the actual
position is inside of this circle. The value of 0.0 means that the accuracy of the
actual position is not defined.

Definition 3. Path S is sequence of locations (L1,L2, ...,Ln), where (T1, T2,
..., Tn) is a non-decreasing sequence of time values at which location was recorded.

Next we define two quantitative indicators for paths, in particular length and
size.

Definition 4. The length of path S = (L1,L2, ...,Ln) is the sum of distances
between subsequent pairs of locations:

length(S) =
∑n−1

i=1
distance(Li,Li+1),

where distance(Li,Li+1) is the distance based on either Euclidean distance or
Vincenty’s formulae [5,13], where the latter calculates the distance of two points
on a spheroid.

Herein we apply Vincenty’s formulae as they are available in a number of
libraries.

Definition 5. The size of path S = (L1,L2, ...,Ln) is the number of locations
in path:

size(S) = n.

In general, as each path contains temporal T and spatial element P, one
can consider three types of path similarities: spatial, temporal and spatial-
temporal [19].

– For spatial approach, only sequence of positions (Pi)i=1
n , regardless of tempo-

ral aspect, gets considered. To compare two or several paths, one can calculate
distance between individual path positions or compare them with respect to
a fixed position Q.

– For temporal approach, only sequence of time (T)i=1
n , where locations get

obtained regardless of their actual positions, gets considered. To compare
paths, one can search for appearance of common time intervals in individual
paths or appearance of paths in certain interval.

Comparison of User Trajectories with the Needleman-Wunsch Algorithm 145

– For spatial-temporal approach, both (Pi)i=1
n and (T)i=1

n get considered, we use
path (S)i=1

n . To compare paths, one can calculate distance between individual
path positions in relation to time of the position or given path in given time.

An appropriate approach for modeling, representation and comparison of paths
is chosen based on task requirements. In this work, we are focusing on spatial
and spatial-temporal representation of paths.

Next, we define clusters and tracks that we need when applying NWA. The
interpolated path is referred to as track, which is defined with new interpolated
locations called clusters.

Definition 6. Cluster K = (P0, δ) includes a set of locations {L1, ...,Ln} such
that:

∀Li,Lj : distance(Li,Lj) < δ,

where i = 1...n, j = 1...n, δ is the cluster diameter and P0 is the cluster center
such that it holds ∀Li : distance(Li,P0) ≤ δ

2 .

Definition 7. Size of cluster |K| is the number of locations in cluster.

Definition 8. Distance between clusters Ki = (Pi, δ) and Kj = (Pj , δ) is defined
as:

distance(Ki,Kj) = distance(Pi,Pj),

for arbitrary i and j, i �= j.

Definition 9. Track C is a sorted sequence of clusters (K1, ...,Kn) such that

∀Ki,Ki+1 : distance(Pi,Pi+1) = δ,

where i = 1...(n − 1), Ki = (Pi, δ) and Ki+1 = (Pi+1, δ).

Definition 10. Size of track |C| is the number of clusters it contains.

4 Related Work

A number of approaches such as those described in [4,8–10] apply various extrac-
tion and prediction approaches based on position information provided by GPS.
In other approaches, instead of using locations from a collection of GPS posi-
tions, the authors constructed a semantic trajectory. Ying et al. [15] proposed a
framework by exploring semantic trajectories of mobile users, in order to model
the next location of a mobile user in support of various location-based services.

Mavoa et al. [7] attempted to link GPS positions and a manually inserted
travel diary using sequence alignment in study of children’s independent mobility.
They concluded that sequence alignment is a promising method. This approach
provided motivation and a starting point for our research.

146 M. Čavojský and M. Drozda

Herein we focus on approaches that take advantage of comparing user tra-
jectories. As our literature review revealed, such approaches are common when
comparing user trajectory with possible trajectories derived from a map. In the
following sub-sections we review the most relevant methods for comparing user
trajectories and map trajectories. These approaches constitute a consistent set
of options that we took into consideration, when proposing our approaches.

4.1 Locational Proximity

The Locational proximity method for comparison of multiple paths has been
described by Yang et. al. [14]. In this method distances are calculated between
each pair of positions in recorded path and map segment. Comparison of paths
is sequential, where each location (L)i=1

n in the path is compared with the map
segment in order to find the closest segment. The approach used for assigning
locations (L)i=1

n to map segments is based on map-matching. The method cal-
culates distance d from the closest position in assigned map segment for each
assigned location in the recorded path. Subsequently, the total deviation is cal-
culated for all locations from the recorded path as:

d =

∫ lM
0

d(l)dl

lM
,

where lM is a total size of compared path.

4.2 Shape Similarity

Yang et. al. also presented another approach for comparison of paths called the
Shape similarity method [14]. To compare a recorded path with matched map
segment, the method uses a shape based similarity in geometrical context. A
level of similarity is expressed by the differential deviation:

δd =

∫ lM
0

|δd(l)|dl

lM
,

where δd = d − d . The derived differential deviation is computed as an average
of deviations retrieved by the Location proximity method for a given recorded
path. Such differential deviation can be then shown in a graph for an easy and
quick comparison of both compared paths. The lower the deviation, the more
similar is the shape of the compared paths.

4.3 Directional Consistency

The movement direction is another approach for effective comparison of
paths [14]. The directional consistency method enables to determine consis-
tency between direction of recorded path and selected map-matched path. To
apply this approach, it is necessary to calculate the difference between selected

Comparison of User Trajectories with the Needleman-Wunsch Algorithm 147

path αO and direction of map-matched path αM , for each pair of locations as
Δα = αM − αO. The overall similarity of the movement direction is calculated
as follows:

Δα =

∫ lM
0

|α(l)|dl

lM

4.4 Behavioral Consistency

The analysis of user behavior is one of the fields focusing on comparison of paths.
The behavioral consistency method requires information about the change of
speed (e.g. speeding, slowing down) and change of direction. As shown in [14],
the similarity of two paths is directly related to the user behavior. This method
allows identification of various habits and patterns of the movement when used
for comparison of various spacious paths.

4.5 Grid Sequencing

The Grid sequencing method described by Thiagarajan et. al. in [12] uses Hid-
den Markov Model containing a set of hidden states and observables. Individ-
ual states emit an observable whose probability is defined by an emission score
E(F,G). This emission score captures the probability of finding a user location
F in a cell G (grid cell). The higher the emission score, the higher the probability
of user location being matched with the map segment. The location with highest
emission score is considered for the one being truly visited by user. The transi-
tion score is calculated as a distance between neighboring cells, and it represents
the probability of further transition from one cell to another.

5 Our Approaches

5.1 Pairwise Method

This approach is a naive approach aimed at straightforward interpretation of
results. We included it as a useful base case. Let Sa = (La1 , ..., Lan

) and
Sb = (Lb1 , ..., Lbm) be paths. In pairwise method we compare pairs of locations
(Lai

, Lbi) as follows:

d = distance(Lai
, Lbi),

where i = 1...x and x = min(m,n). We say that locations (Lai
, Lbi) are similar,

if distance(Lai
, Lbi) < δ. In order to compute similarity score for path Sa and

Sb, we count the number of similar location pairs. This approach requires that
paths get manually synchronized, i.e. it must be decided which initial pair of
positions from either path will be used in computation.

148 M. Čavojský and M. Drozda

5.2 Proximity Method

This approach is derived from the locational proximity approach introduced in
the previous section. In proximity method we compare paths by computing:

d = distance(Lai
, Lbx), and

∀Lai
∃Lbx : distance(Lai

, Lbx) = min(distance(Lai
, Lbj),

where i = 1...n and j = 1...m. As for pairwise method, we count the number
of similar (Lai

, Lbj) with respect to δ. The proximity method applies pairs of
positions with least distance, therefore unlike the pairwise method, this method
can be applied without any initial synchronization.

5.3 Upward Proximity Method

Upward proximity method is similar to proximity method with the difference
that subsequent pairs for comparison are chosen in increasing order. In upward
proximity method we compare paths by computing:

d = distance(Lai
, Lbx),

∀Lai
∃Lbx : distance(Lai

, Lbx) = min(distance(Lai
, Lbj)),

bj > k,

where i = 1...n, j = 1...m and Lk is the location used in previous iteration. As
for previous methods, we count the number of similar (Lai

, Lbj) with respect
to δ. We have proposed Upward proximity method as an iterative improvement
over Proximity method. The rationale is that when comparing pairs of locations,
back-tracking should not be possible.

5.4 NWA Approach

Our proposed approach is based on NWA alignment. In order to apply NWA,
it is necessary to convert paths Sa and Sb to tracks Ca = (Ka1 , ...,Kar

) and
Cb = (Ka1 , ...,Kas

). Then we compute alignment of Ca and Cb with NWA. As for
previous methods, we count the number of aligned clusters with respect to fixed
distance δ:

d = distance(Kai
,Kbi),

where the pair (Kai
,Kbi) is aligned applying NWA.

6 Experimental Setup

6.1 Data Sets

The evaluation of our approach to sequence alignment is based on data sets that
record people movement. We considered two data sets:

Comparison of User Trajectories with the Needleman-Wunsch Algorithm 149

– A data set that we collected using 455 mobile devices distributed among
our students. The results presented herein were collected by our students
during a 10-month period starting from September 2016 to July 2017. Over 20
million location records provide insights into our students’ behavior patterns
(bars, restaurants, clubs etc.). Recording of locations was done using our
implemented mobile application for energy efficient trajectory recording of
mobile devices using WiFi scanning, described in more details in [1,6].

– The Geolife data set (Microsoft Research Asia) was collected by 182 users
in a period of over three years (from April 2007 to August 2012). This data
set contains 17,621 trajectories with a total distance of about 1.2 million
kilometers and a total duration of 48,000+ hours. These trajectories were
recorded by different GPS loggers and GPS capable phones, and have a variety
of sampling rates. This data set recorded a broad range of users’ outdoor
movements, including not only life routines like go home and go to work but
also some entertainments and sports activities, such as shopping, sightseeing,
dining, hiking, and cycling [16–18].

6.2 Pre-processing

In pre-processing phase it is necessary to identify errors or incomplete paths,
which were excluded from evaluation. Therefore, in the first step we eliminated
paths shorter than sizemin; we have set this parameter to 500 m.

During the recording of paths we encountered situations where for some
reason devices stopped collecting information about the location. In those cases
the location data includes gaps; see Fig. 1(a). Identified gaps can have a length
of up to few kilometers, therefore it is crucial to exclude them by dividing the
path into separate sub-paths.

In a situation when mobile device does not move, for example it lies on a
table, a nest can arise; see Fig. 1(b). Nests are often formed by a large number
of positions. For this reason we implemented the process of clustering individual
positions that are close to each other.

Initially, we implemented a clustering method based on a fixed-size square
with side a, where the center of a square represented the starting location. How-
ever, as this approach did not result in an effective clustering of locations, we
proposed and implemented a clustering method, where square center gets moved
in order to include a new location. In other words, location belongs to the exist-
ing square if a center of that square can be adjusted to contain this location
with all locations that belonged to this square before.

The proposed clustering with dynamic center can lead to the situation where
individual squares overlap each other while each location belongs to only one
square. An advantage of the proposed clustering is its ability to minimize the
number of required squares.

An example of recorded locations is shown in Fig. 2(a), where locations are
marked by circles with diameter representing location accuracy A. The figure
represents a usual nature of recorded path with a large number of gaps. The
interpolated movement of user is represented by line.

150 M. Čavojský and M. Drozda

(a) Recorded path locations (b) Interpolated path locations

Fig. 2. Recorded and interpolated path.

Comparison of paths with many gaps can lead to inaccurate results. In order
to overcome this problem, any recorded path needs to be interpolated with evenly
distributed locations along the entire path. Therefore we implemented backward
interpolation of path. With this process we ensure constant distribution of loca-
tions along the path as shown in Fig. 2(b).

The final step was to remove all short paths, that can also be a result of
previous steps. As in the first step, we removed all paths shorter than sizemin.

6.3 NWA Parameters

NWA requires scoring schema that defines score for match, score for mismatch
and gap penalty. In our case, we set these parameters to 1, −1 and 0, respectively.
The given scoring schema was chosen by multiple tests, to ensure the highest
accuracy for aligning clusters of given tracks. Arguably, choosing parameters for
a scoring schema deserves a separate study with more detail and experimen-
tation. We remind that scoring schemes such as BLOSUM were also derived
experimentally with expert knowledge about a specific problem.

7 Experimental Results

7.1 Evaluation Details

When applying NWA, tracks need to get computed; see Definition 9. Figure 3(a)
shows an example for computed tracks, more specifically, it shows two tracks
that need to get compared.

The comparison of tracks has been based on two criteria: the number of
subsequent mismatches and the total number of matches. As accuracy of user
movement tracking based on GPS data captured by mobile device varies, we
consider for evaluation the maximum number of subsequent mismatches instead
of the total number of mismatches. This means, a path can contain any number
of mismatches as far as the maximum number of subsequent mismatches does
not exceed a certain threshold, in our case we set this threshold to 3.

Comparison of User Trajectories with the Needleman-Wunsch Algorithm 151

(a) Compared tracks (b) Alignment using algorithm

Fig. 3. Comparison and alignment applying NWA

When a mismatch in one path is directly followed by a mismatch in other
path, this is counted as a single mismatch due to the fact that both mismatches
happened in two different clusters. Mismatches are counted as two only if they
follow each other. For this reason it is necessary to check also an overall similarity
of tracks based on a total number of matches.

Definition 11. Tracks Ca and Cb are similar if these tracks have at least α
matches and no more than β subsequent mismatches.

Table 1. Alignment computed by NWA

3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 1, 3, 3, 3, 3, 3, 3, 3, 2, 2, 1
(1)=mismatch of Track 1, (2)=mismatch of Track 2, (3)=match

The parameters α and β have been experimentally set to α = 75% a β = 3.
An example of track alignment is shown in Table 1, representing the same result
as depicted in Fig. 3(b).

In this particular case, Table 1 shows 23 matches in interpolated locations
and 3 mismatches. In this example, one of the tracks is longer, consisting of 26
clusters, thus having 1 cluster more than the other track. As Track 1 contains
23 matches from 26 and the maximum occurrence of subsequent mismatches is
2, the compared tracks are considered similar.

Table 2 shows the distances of locations for similar or dissimilar pairs of tracks
with respect to some threshold ε, which was set to

√
a2 + a2 = 70, 71 m, i.e. to

the diagonal length of a square with sides equal to 50 m. We remind that such
a fixed-size square was used for clustering in the pre-processing phase.

Table 2 shows that shortest distances between pairs of locations can be
expected for the proximity approach and the NWA approach. This indicates
that these two approaches might be the best candidates for comparing user

152 M. Čavojský and M. Drozda

Table 2. Results for total number of 286, 431 pairs of locations or cluster centers for
NWA approach.

Method d ≤ ε d > ε d ≤ ε d > ε

Pairwise 99 874 186 557 35% 65%

Proximity 268 024 18 407 94% 6%

Upward proximity 92 672 193 759 32% 68%

NWA 271 078 15 353 95% 5%

tracks. Notice that in the case of the NWA approach, we compute distances of
cluster centers, not individual locations.

With respect to Definition 11 we filtered the two considered data sets so that
we have 1, 500 pairs of similar tracks and 500 pairs of tracks of dissimilar tracks.

7.2 Results

When evaluating the two data sets, we compared the performance of following
approaches:

– NWA approach,
– Pairwise method,
– Proximity method,
– Upward proximity method.

We consider the pairwise method and proximity method to be useful base
cases, i.e. approaches with straightforward implementation and arguably leading
to results that are simpler to interpret.

Table 3 shows the results for the four considered approaches, where true posi-
tive is when a pair of tracks that was correctly identified as similar, true negative
is when a pair of tracks that was correctly identified as dissimilar, false positive
when a pair of tracks was dissimilar but identified to be similar, and finally, true
negative is when a pair of tracks was similar but identified to be dissimilar.

Table 3. Performance of different methods.

Method True positive False positive False negative True negative

Pairwise 87 159 913 341

Proximity 862 465 138 35

Upward proximity 284 307 716 193

NWA 918 74 82 426

Table 3 thus shows that NWA approach is the winning approach in all four
categories, especially, this approach offers very low false positive and false neg-
ative rates.

Comparison of User Trajectories with the Needleman-Wunsch Algorithm 153

8 Conclusion and Future Work

Our goal was to apply NWA, better known from biology and bio-informatics
rather than other research areas, to user trajectory comparison. We proposed
several adjustments to this algorithm, so that it can be applied to data sets with
different properties than data sets arising in the above mentioned areas.

NWA requires a scoring scheme as an input, and arguably, more research
effort might need to be invested in finding optimal scheme. Our results show that
NWA can be successfully applied to user trajectory comparison. When compar-
ing NWA to the proximity method, we show that NWA offers 5.6% improvement
for true positives. When comparing NWA to the pairwise method, we show that
NWA offers 19% improvement for true negatives. NWA dominates other consid-
ered approaches in terms of false positives and false negatives. Given the high
false positives and high negatives rates of other methods, these can be considered
useless, at least in the context of the applied data sets.

We plan to do further tests with other existing data sets, which could lead to
improved knowledge about the performance of our NWA approach in situations
insufficiently covered by the data sets considered herein.

Acknowledgment. The authors were supported by the project “STU ako ĺıder
Digitálnej koaĺıcie”, project no. 002STU-2-1/2018, financed by Ministry of Education,
Science, Research and Sport of the Slovak Republic. Maroš Čavojský also thankfully
acknowledges a conference grant received from MAIND, s.r.o.

References

1. Čavojský, M., Drozda, M.: Energy efficient trajectory recording of mobile
devices using wifi scanning. In: Ubiquitous Intelligence & Computing, Advanced
and Trusted Computing, Scalable Computing and Communications, Cloud
and Big Data Computing, Internet of People, and Smart World Congress
(UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), 2016 International IEEE Con-
ferences, pp. 1079–1085 (2016)

2. Google: Location—Android Developers. https://developer.android.com/reference/
android/location/package-summary.html

3. Henikoff, S., Henikoff, J.G.: Amino acid substitution matrices from protein blocks.
Proc. Natl. Acad. Sci. 89(22), 10915–10919 (1992)

4. Hung, C.C., Chang, C.W., Peng, W.C.: Mining trajectory profiles for discovering
user communities. In: Proceedings of the 2009 International Workshop on Location
Based Social Networks - LBSN 2009. pp. 1–8. ACM (2009). https://doi.org/10.
1145/1629890.1629892

5. Karney, C., Deakin, R.E.: FW bessel (1825): The calculation of longitude and
latitude from geodesic measurements. Astron. Nachr. 331(8), 852–861 (2010)

6. Čavojský, M., Uhlar, M., Ivanis, M., Molnar, M., Drozda, M.: User trajectory
extraction based on wifi scanning. In: FiCloud 2018, The IEEE 6th International
Conference on Future Internet of Things and Cloud, pp. 115–120 (2018)

7. Mavoa, S., Oliver, M., Witten, K., Badland, H.M.: Linking GPS and travel diary
data using sequence alignment in a study of children’s independent mobility. Int.
J. Health Geogr. 10(1), 64 (2011)

https://developer.android.com/reference/android/location/package-summary.html
https://developer.android.com/reference/android/location/package-summary.html
https://doi.org/10.1145/1629890.1629892
https://doi.org/10.1145/1629890.1629892

154 M. Čavojský and M. Drozda

8. Michael, K., McNamee, A., Michael, M., Tootell, H.: Location-based intelligence
– modeling behavior in humans using GPS location-based intelligence – modeling
behavior in humans using GPS location-based intelligence – modeling behavior in
humans using GPS. In: 2006 IEEE International Symposium on Technology and
Society (ISTAS 2006), pp. 1–8 (2006)

9. Monreale, A., Pinelli, F., Trasarti, R., Giannotti, F.: WhereNext: a location pre-
dictor on trajectory pattern mining. In: Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 637–646.
ACM (2009)

10. Montoliu, R., Blom, J., Gatica-Perez, D.: Discovering places of interest in everyday
life from smartphone data. Multimed. Tools Appl. 62(1), 179–207 (2013)

11. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for
similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48(3), 443–
453 (1970)

12. Thiagarajan, A., Ravindranath, L., Balakrishnan, H., Madden, S., Girod, L.: Accu-
rate, low-energy trajectory mapping for mobile devices. In: Proceedings of USENIX
Association (2011)

13. Van Brummelen, G.: Heavenly Mathematics: The Forgotten Art of Spherical
Trigonometry. Princeton University Press, Princeton (2012)

14. Yang, D., Zhang, T., Li, J., Lian, X.: Synthetic fuzzy evaluation method of trajec-
tory similarity in map-matching. J. Intell. Transp. Syst. 15(4), 193–204 (2011)

15. Ying, J.J.C., Lee, W.C., Weng, T.C., Tseng, V.S.: Semantic trajectory mining for
location prediction. In: Proceedings of the 19th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, pp. 34–43. ACM
(2011). https://doi.org/10.1145/2093973.2093980

16. Zheng, Y., Li, Q., Chen, Y., Xie, X., Ma, W.Y.: Understanding mobility based
on GPS data. In: Proceedings of the 10th International Conference on Ubiquitous
Computing, pp. 312–321. ACM (2008)

17. Zheng, Y., Xie, X., Ma, W.Y.: Geolife: a collaborative social networking service
among user, location and trajectory. IEEE Data Eng. Bull. 33(2), 32–39 (2010)

18. Zheng, Y., Zhang, L., Xie, X., Ma, W.Y.: Mining interesting locations and travel
sequences from GPS trajectories. In: Proceedings of the 18th International Con-
ference on World Wide Web, pp. 791–800. ACM (2009)

19. Zheng, Y., Zhou, X.: Computing with Spatial Trajectories. Springer, New York
(2011). https://doi.org/10.1007/978-1-4614-1629-6

https://doi.org/10.1145/2093973.2093980
https://doi.org/10.1007/978-1-4614-1629-6

	Comparison of User Trajectories with the Needleman-Wunsch Algorithm*-10pt
	1 Introduction
	2 Needleman-Wunsch Algorithm (NWA)
	3 Definitions
	4 Related Work
	4.1 Locational Proximity
	4.2 Shape Similarity
	4.3 Directional Consistency
	4.4 Behavioral Consistency
	4.5 Grid Sequencing

	5 Our Approaches
	5.1 Pairwise Method
	5.2 Proximity Method
	5.3 Upward Proximity Method
	5.4 NWA Approach

	6 Experimental Setup
	6.1 Data Sets
	6.2 Pre-processing
	6.3 NWA Parameters

	7 Experimental Results
	7.1 Evaluation Details
	7.2 Results

	8 Conclusion and Future Work
	References

